Coexistence of superconductivity and magnetism

(PhysOrg.com) -- Scientists from the University of Sydney are celebrating the 100th anniversary of superconductivity with a discovery of their own.

As part of an international collaboration, researchers from the University's Australian Centre for Microscopy and Microanalysis have identified a link between superconductivity and magnetism. Their results were published today in the international physics journal, Physical Review Letter.

Previously, superconductivity and magnetism have been considered to be 'at war' says Dr Wai Kong Yeoh, who led the effort around 'Probing Atoms to Understand the Coexistence of Superconductivity and Magnetism'.

Using a technique known as atom probe tomography, a cutting-edge that provides atom-by-atom map of a material, Dr Yeoh captured a which shows the structure of Fe-based superconductors. The image shows coexistence of magnetism and superconductivity, in which dopant atoms are observed forming nanoscale clusters. These clusters contain only a handful of atoms.

"Complementary advanced quantum-mechanics based simulations demonstrated that these clusters underpin the unique properties of this material.

Research towards establishing the interplay between these two states, that usually only coexist under very restricted conditions, has the potential to lead to exotic new or the development of advanced superconducting based devices, with application in nanoelectronics, or high-resolution magnetic measurement" says Dr Yeoh.

The results demonstrate the potential of this approach, combining characterisation and advanced simulations, to open new pathways to advance superconductor science.


Explore further

Secrets behind high temperature superconductors revealed

Provided by University of Sydney
Citation: Coexistence of superconductivity and magnetism (2011, June 17) retrieved 13 November 2019 from https://phys.org/news/2011-06-coexistence-superconductivity-magnetism.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments