Inexpensive new instruments test building sealants under real-world conditions

April 5, 2011

Sealants, like weather stripping, are what separates the inside from the outside of a building, byproviding a barrier that prevents water from seeping in, for example, or heat from leaking out. The challenge, says research chemist Christopher White of the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, is predicting when they will fail.

Current methods test sealants statically, by placing them outdoors for long periods of time, to measure their resistance to the elements. The problem, says White, is that under normal conditions, sealants are also affected by constant movement: the temperature-induced expansion and contraction of the different kinds ofmaterials they seal together—such as glass, in a window, and steel, in the window and building frame. "When you put sealant on a building, it is because the glass window and steel frame expand and contract at different rates with changes in temperature," he explains. "The sealant needs to be able to seal this gap, as it changes." This creates fatigue in the sealant, eventually causing it to crack and fail.

Using simple materials that can largely be purchased from a hardware store—including PVC pipe, wood, steel supporting frames, and toilet flanges—White and his colleagues have developed the first instruments to test sealants under real-world conditions, while monitoring their displacement and load with sensors and tracking environmental conditions with a station. "This new device—which is very inexpensive—induces movement that is very similar to what a sealant would see in the actual application, in a ," he says.

The designs of the two devices—one that puts in tension and one that puts them in compression when cold—have been passed along to an industrial consortium of sealant manufacturers working with NIST. "Two companies have actually built and are using them for sealant testing," says White.

Explore further: NIST testing device may help to 'seal the deal' for building owners

More information: The paper, "Design, Fabrication and Implementation of Thermally Driven Devices for Building Joint Sealants," by Christopher White, Kar Tean Tan, Emmet O'Brien, Don Huntson, and Joannie Chin, appears in the Review of Scientific Instruments.

Related Stories

FDA OKs new adhesive to treat burn victims

March 20, 2008

The U.S. Food and Drug Administration approved a medical adhesive -- a fibrin sealant called Artiss -- for use in attaching skin grafts to burn patients.

Recommended for you

New method analyzes corn kernel characteristics

November 17, 2017

An ear of corn averages about 800 kernels. A traditional field method to estimate the number of kernels on the ear is to manually count the number of rows and multiply by the number of kernels in one length of the ear. With ...

Optically tunable microwave antennas for 5G applications

November 16, 2017

Multiband tunable antennas are a critical part of many communication and radar systems. New research by engineers at the University of Bristol has shown significant advances in antennas by using optically induced plasmas ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.