NIST pings key material in sonar, closes gap on structural mystery

November 10, 2010, National Institute of Standards and Technology
Piezoelectrics like PZT are important in the construction of actuators, such as those used to read data from computers’ hard disks. A better fundamental understanding of PZT may one day allow scientists to create better piezoelectric materials from the ground up. Сourtesy: Shutterstock/Studio Foxy

Using a neutron beam as a probe, researchers working at the National Institute of Standards and Technology have begun to reveal the crystal structure of a compound essential to technologies ranging from sonar to computer memory. Their recent work* provides long-sought insight into just how a widely used material of modern technology actually works.

The compound is a "piezoelectric," a material capable of changing one kind of energy into another—mechanical to electrical, or vice versa. Long employed in sonar systems to detect sound waves, more recently piezoelectrics have been applied in devices that require minuscule changes in position, such as the head that reads data from your computer's hard drive.

For decades, the industry standard piezoelectric has been PZT, a compound that contains titanium,zirconium, lead and oxygen. Crystals of PZT change a tiny fraction of a percent in size when a sound wave strikes them, and thisshape change creates an electrical impulse. Decades ago, it was discovered that PZT performs at its best when the titanium and zirconium appear in approximately equal proportions, but no one really understood why.

"The theories frequently concern what happens at the transition line between having a surplus of zirconium and one of titanium," says Peter Gehring of the NIST Center for Neutron Research (NCNR). "Some theories suggest that right near the transition zone, the atoms take on a special configuration that allows certain atoms to move more freely than they can otherwise. But because it's been hard to grow a crystal of PZT large enough to analyze, we couldn't completely test these ideas."

A breakthrough came when chemists at Canada's Simon Fraser University managed to grow single crystals of a few millimeters in size and sent them to the NCNR for examination with neutron scattering—a technique for determining the positions of individual atoms in a complex by observing the patterns made by neutrons bouncing off it. The team, which also included researchers from the University of Oxford, the University of Tokyo, and the University of Warwick, was able to definitively rule out one of the proposed structures of PZT.

Instead, they found that each PZT crystal element likely assumes one of two possible forms that coexist within the larger crystal array. These forms are dictated by chemical composition, and they may influence how well the material performs on a large scale. Their findings also suggest that the change in behavior seen at the transition happens gradually, rather than at some sharply delineated proportion of zirconium to titanium.

Gehring says the results could be a step toward bettering PZT. "Determining the structure might give us the perspective necessary to design a piezoelectric material from first principles, instead of just playing around and seeing what works," he says. "That's what you need if you're ever going to build a better mousetrap."

Explore further: Researchers discover potential of lead-free piezoelectric ceramics

More information: * D. Phelan, X. Long, Y. Xie, Z.-G. Ye, A.M. Glazer, H. Yokota, P.A. Thomas and P.M. Gehring. Single crystal study of competing rhombohedral and monoclinic order in lead zirconate titanate. Physical Review Letters, Nov. 8, 2010, DOI:10.1103/PhysRevLett.105.207601

Related Stories

Lead-free piezoelectric materials of the future

September 14, 2010

Piezoelectric materials have fantastic properties: squeeze them and they generate an electrical field. And vice-versa, they contract or expand when jolted with an electrical pulse. With a name derived from the Greek word ...

Modern ceramics help advance technology

May 8, 2008

Many important electronic devices used by people today would be impossible without the use of ceramics. A new study published in the Journal of the American Ceramic Society illustrates the use of ceramic materials in the ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.