Mildew-resistant and infertile

November 24, 2010
These are thale cress (Arabidopsis thaliana) plants with powdery mildew infection. The white coating on the infected leaves, which originates from the mycelium on the leaf surface, is a typical feature of mildew infection. Credit: Ralph Panstruga

Two proteins involved in powdery mildew infection in plants also play an important role in fertilization.

Mildew infections not only cause unsightly vegetable patches, they can also result in extensive crop failure. Interestingly, the processes involved in infections with this garden pest are similar to those involved in fertilisation. Scientists from the Max Planck Institute for Plant Breeding Research in Cologne and the University of Zurich have identified two proteins in the species that are necessary for both fertilisation and infection with powdery mildew. This explains why mildew-resistant plants, in which these genes are mutated, are infertile. (Science, Vol 330, p 968-971)

and hyphae, the filamentous structures of which fungi are formed, not only look very similar, they also require similar proteins. The two proteins in question, which have just been discovered, are named after the Etruscan fertility goddesses Feronia and Nortia. The scientists discovered that these proteins are both beneficial and harmful to plants. They link the capacity for seed formation with the absence of resistance to mildew infection.

Feronia signals to the pollen tube, which germinates from the pollen, that it has reached its destination and that it is time to release the male gametes. The protein is also formed in the leaves, however, and provides mildew with access to the plant. For the latter to become resistant to the intruder, both the maternal and paternal copies of the feronia gene must be defective. If the plant lacks the feronia protein, however, the pollen tube does not stop growing at the entrance to the embryo sac but continues to penetrate into the female part of the flower and does not trigger the release of . As a result, fertilisation does not take place and an embryo does not develop.

The protein Nortia is also involved in fertilisation; however, it does not occur in the leaves. A protein known as MLO, which is closely related to Nortia, is found there instead. MLO makes plants, e.g. barley, in which Ralph Panstruga discovered the MLO gene a few years ago, prone to mildew. However, they only become resistant if both copies of the MLO gene are mutated. Because Arabidopsis has three MLO genes that play a role in susceptibility to mildew, in this plant, six copies must become defunct before it becomes resistant to mildew. Various other genes exist, however, that also cause resistance to fungal infections in plants.

Resistant or fertile

Feronia and Nortia are formed by the helper cells of the embryo sac. They bring about the fusion of the gametes in the ovary. Feronia and MLO in the leaves enable mildew to penetrate into the plant. "This dual function indicates why evolution has not yet succeeded in blocking this point of access to mildew. It would clearly be very difficult to decouple these two functions. Therefore, the alternatives are: resistant and infertile, or vulnerable and fertile," says Ralph Panstruga from the Max Planck Institute for Plant Breeding Research.

Feronia is a receptor that apparently directly influences Nortia. However, the scientists do not yet know how Feronia cooperates with Nortia and MLO. "Our goal is to breed mildew-resistant plants based on Feronia mutants that are also fertile," says Panstruga. This is a very ambitious aim, as evolution appears not to have produced any such mutants up to now. Feronia evidently plays such an important role in the ovary and the leaves that the plant simply cannot manage without it.

Explore further: Fertility or powdery mildew resistance?

More information: Sharon A. Kessler, Hiroko Shimosato-Asano, Nana F. Keinath, Samuel E. Wuest, Gwyneth Ingram, Ralph Panstruga and Ueli Grossniklaus, Conserved Molecular Components for Pollen Tube Reception and Fungal Invasion, Science, 12 November 2010, 330: 968-971.

Related Stories

Fertility or powdery mildew resistance?

November 12, 2010

Powdery mildew is a fungus that infects both crop and ornamental plants. Each year, powdery mildew and other plant pathogens cause immense crop loss. Despite decades of intense research, little is known of the plant molecules ...

Signal proteins for plant stem cells discovered

March 11, 2010

Wageningen University (The Netherlands) biochemist Dolf Weijers and his German colleagues have discovered how stem cells in a plant embryo are formed. The cells communicate with one another via the transportation of a protein, ...

Recommended for you

Ants need work-life balance, research suggests

January 16, 2017

As humans, we constantly strive for a good work-life balance. New findings by researchers at Missouri University of Science and Technology suggest that ants, long perceived as the workaholics of the insect world, do the same.

New tools will drive greater understanding of wheat genes

January 16, 2017

Howard Hughes Medical Institute scientists have developed a much-needed genetic resource that will greatly accelerate the study of gene functions in wheat. The resource, a collection of wheat seeds with more than 10 million ...

How China is poised for marine fisheries reform

January 16, 2017

As global fish stocks continue sinking to alarmingly low levels, a joint study by marine fisheries experts from within and outside of China concluded that the country's most recent fisheries conservation plan can achieve ...

SMiLE-seq: A new technique speeds up genetics

January 16, 2017

Scientists at EPFL have developed a technique that can be a game-changer for genetics by making the characterization of DNA-binding proteins much faster, more accurate, and efficient.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.