Fusion makes major step forward at MIT through studies of the plasma edge

November 8, 2010

Researchers at MIT have taken steps toward practical fusion energy through better understanding of the physics that governs the interaction between plasmas and the material walls of the vessels that contain them.

The best developed approach for practical employs magnetic bottles to hold and isolate extremely hot plasmas inside a vacuum vessel. Using magnetic fields for thermal insulation has proven quite effective, allowing plasma temperatures in excess of 100 million C to be attained - conditions under which the nuclei fuse and release energy.

The device, a torus or donut-shaped magnetic bottle, has been found to perform particularly well and is the basis for , a full-scale international fusion experiment presently under construction in France with U.S. participation. Projections from current experiments to ITER, and beyond to energy producing reactors, presents a number of scientific and technical challenges. Prominent among these is handling the very large heat loads which occur at the interface between the plasma and the materials from which the reactor is constructed.

Plasma channels as it streams along in adjoining boundary layers. This produces narrow footprints on wall surfaces. The smaller the footprint, the more intense the heat flux becomes. In fact, the intensity can easily exceed the power handling ability of present technologies. Even worse, certain naturally occurring plasma oscillations can create transient heat loads which are larger still. Recent experiments on the Alcator C-Mod tokamak are aimed at understanding and overcoming this challenge by reducing the steady-state power conducted to the wall, by characterizing the physics which sets the area over which this power is distributed, and by investigating a confinement regime that eliminates transient heat loads.

One set of recent experiments in Alcator C-Mod used ultra-violet radiation from injected impurities to decrease power reaching the divertor, a portion of the wall with the highest heat flux footprint. These results are significant for ITER as well as future fusion reactors that will
provide commercial electricity, and show that redistributing the exhaust power by impurity radiation is a viable option.

Different experiments, aimed at understanding the physics that sets the heat-flux footprint size, have discovered its width is independent of the magnetic field line length. This behavior appears counter-intuitive at first, but is part of a growing body of evidence that self-regulatory heat transport mechanisms are at play, which tend to clamp the width of the heat flux profiles at a critical scale-length value.

Another aspect of the plasma-wall challenge is the elimination of transient heat loads, which arise from a relaxation oscillation produced spontaneously in many high performance plasmas. These oscillations help expel unwanted impurities that can contaminate the plasma, but they can also lead to unacceptably high power loads. Ongoing experiments are studying a confinement regime that simultaneously achieves good energy confinement without accumulation of impurities and without the oscillations.

These new findings will be presented in three invited talks at the American Physical Society, Division of Physics 52nd annual meeting on November 8-12 in Chicago.

Explore further: Taming thermonuclear plasma with a snowflake

Related Stories

Taming thermonuclear plasma with a snowflake

November 8, 2010

Physicists working on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory are now one step closer to solving one of the grand challenges of magnetic fusion research -- how to reduce the ...

New project aims for fusion ignition

May 10, 2010

Russia and Italy have entered into an agreement to build a new fusion reactor outside Moscow that could become the first such reactor to achieve ignition, the point where a fusion reaction becomes self-sustaining instead ...

Upping the power triggers an ordered helical plasma

November 2, 2009

If you keep twisting a straight elastic string, at some moment it starts kinking in a wild way. Something similar occurs when one increases the electrical current flowing in a magnetized plasma doughnut: it takes on a wild ...

Wanted: the right wall material for ITER

October 12, 2007

ASDEX Upgrade at Max Planck Institute of Plasma Physics (IPP) in Garching, Germany, recently became the world's first and only device allowing experiments with a wall completely clad with metal, viz. tungsten. The results ...

Plasma power: Turning fusion into a renewable energy source

September 14, 2009

Fusion is best known for powering the sun and stars. But researchers have long been studying ways to transform that power source into future "green" energy that can be used on Earth. A team of researchers from UC San Diego, ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.