Watching nanosheets and molecules transform under pressure could lead to stronger materials

October 20, 2010 By Lauren Gold
Wang and colleagues used small angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD) to observe changes in the molecular structure of wurtzite crystal under pressure.

( -- When it comes to tests of strength, graphite -- actually layered sheets of carbon atoms -- fares badly. Subject it to ultra-high pressure, though, and graphite becomes diamond, the hardest substance known, and a uniquely useful material in a variety of applications.

But while diamonds may be forever, most materials that transform under high revert to their original when the pressure is lifted -- losing any useful properties they may have gained when the squeeze was on.

Now, by understanding the process behind the transformation itself, from both experimental and theoretical perspectives, researchers have taken a potential step toward creating a new class of exceptionally strong, durable materials that maintain their high-pressure properties -- including strength and superconductivity -- in everyday low-pressure environments.

The research, led by Zhongwu Wang, staff scientist at the Cornell High Energy Synchrotron Source (CHESS) and including Roald Hoffmann, the 1981 chemistry Nobel laureate and Frank H.T. Rhodes Professor of Humane Letters Emeritus, appears in the Oct. 12, issue of the .

Additional scientists at CHESS, a group in Korea and a postdoctoral associate in the Hoffmann group, Xiao-dong Wen, also contributed.

Researchers frequently use , a technique in which X-rays are projected at a structure and captured on film after they pass through or bounce off its surfaces, to determine the static structures of atoms and molecules. But until now, the transformation and interaction between two structures happened in a metaphorical black box, said Wang.

To open the box, researchers focused on wurtzite, a cadmium-selenium crystal in which atoms are arranged in a diamondlike structure and molecules are bonded on the surface. When thin sheets of wurtzite are squeezed under 10.7 gigapascals of pressure, or 107,000 times the pressure on the Earth's surface, their atomic structure transforms into a rock salt-like structure

Subjecting a macro-sized crystal to high pressure can cause it to break (small defects in the crystal structure magnify, causing the structure, and the transformation process, to become irregular) -- so the group's Korean collaborators instead prepared wurtzite nanosheets, which are just 1.4 nanometers thick and defect-free.

As pressure was applied, Wang and colleagues integrated two X-ray diffraction techniques (small- and large-angle X-ray diffraction) to characterize changes in the crystal's surface shape and interior atomic structure, as well as the structural change of surface-bonded molecules.

They first discovered that the nanosheets required three times the pressure to undergo the transformation as the same material in larger crystal form.

They also tested the material's yield strength (the stress level at which it begins to deform), hardness (resistance to scratching or abrading) and elasticity (ability to return to its original form) during the transformation. Understanding how those properties change as the molecules interact could help researchers design stronger, tougher materials, Wang said.

And adding a bonding molecule called a soft ligand to the surface of the high-pressure nanosheets, the researchers observed the effect of that bonding to the nanosheets' internal structure, transformation pressure, and spacing.

Meanwhile, as Wang and colleagues performed the experiments at CHESS, Wen and Hoffmann worked on the corresponding theory behind the transformation interaction.

"Both the experiment and the simulation agree well," Wang said. "Now we know how the atoms move. We understand the intermediate procedure."

The next step is to test ways of blocking the reverse transformation from rock salt back to wurtzite, creating a material that maintains rock salt's unique properties under ambient pressure.

And Wang's experimental process could hold promise for understanding the transformation pathway for other compounds as well.

"It can apply to all other materials," Wang said. "Just follow our way of measurement."

Explore further: Metallic Glass Yields Secrets Under Pressure

Related Stories

Metallic Glass Yields Secrets Under Pressure

March 16, 2010

( -- Metallic glasses are emerging as potentially useful materials at the frontier of materials science research. They combine the advantages and avoid many of the problems of normal metals and glasses, two classes ...

Polymeric nitrogen synthesised

August 5, 2004

The new single-bonded nitrogen phase could serve as a high-energy storage material, report Max Planck researchers in Mainz, Germany Nitrogen, the major constituent of air, usually consists of inert molecules where two atoms ...

Carbon dioxide forms polymeric materials under high pressure

March 25, 2009

Carbon dioxide is a molecular gas at ambient conditions and an important consitituent of the Earth’s atmosphere. It is also a likely component in the Earth’s mantle, and it plays an important role in the life cycle. But ...

Metal Becomes Transparent Under High Pressure

March 12, 2009

An international team of scientists have discovered a transparent form of the element sodium (Na). The team, led by Artem Oganov, Professor of Theoretical Crystallography at Stony Brook University, and Yanming Ma, the lead ...

Putting the Pressure on Iron-Based Superconductors

March 5, 2009

( -- Traditionally, magnetism and superconductivity don't mix. For more than 20 years, the only known superconductors that worked at so-called "high" temperatures (above 30 K, or about -406 degrees Fahrenheit) ...

Recommended for you

Resistive memory components the computer industry can't resist

October 23, 2017

Make way for some new memsistors. For years, the computer industry has sought memory technologies with higher endurance, lower cost, and better energy efficiency than commercial flash memories. Now, an international collaboration ...

Taming 'wild' electrons in graphene

October 23, 2017

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped.

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.