Magnetic anomalies shield the Moon

September 28, 2010
Figure 1: Spatial variation of the energetic neutral hydrogen flux over the magnetic anomaly close to the Gerasimovic crater. (a) High energy hydrogen flux with energy indicates a ~50% flux reduction inside the magnetic anomaly compared to the surrounding area. (b) Hydrogen flux with lower energy of 30-100 eV fills the magnetic anomaly. (c) The albedo (reflectivity) map of the Moon with the spacecraft trajectories (white lines).

Scientists have discovered a new type of solar wind interaction with airless bodies in our solar system. Magnetized regions called magnetic anomalies, mostly on the far side of the Moon, were found to strongly deflect the solar wind, shielding the Moon’s surface. This will help understand the solar wind behaviour near the lunar surface and how water may be generated in its upper layer. Observational evidence for these findings were presented by Drs. Yoshifumi Futaana and Martin Wieser at the European Planetary Science Congress in Rome, on Friday 24th September.

Atmosphere-less bodies interact with the solar wind quite differently than the Earth: Their surfaces are exposed without any shielding by a dense atmosphere or magnetosphere. This causes them to be heavily weathered by meteoroids or the solar wind, forming a very rough and chaotic surface called regolith. Previously, the solar wind was thought to be completely absorbed by regolith. However, recent explorations of the Earth's by the Chang'E-1, Kaguya and Chandrayaan-1 spacecrafts have revealed that this interaction is not that simple.

A significant flux of high was found to originate from the lunar surface, most probably due to the solar wind directly reflected off the Moon’s regolith. “These results may change dramatically the way we understood the solar wind-regolith interaction so far,” says Dr. Futaana of the Swedish Institute of . “Since the solar wind is one potential source of water on the Moon, we need to make better models of the lunar hydrogen circulation in order to understand how form in its upper layers. Also, it will be possible to remotely investigate the solar wind-surface interaction on other airless bodies, such as Mercury or the Martian moon Phobos, by imaging the energetic that are reflected back to space when the solar wind hits their surface,” he adds.

Figure 2: Comparison between the reflected proton flux and the magnetic anomaly distribution on the Moon. (Left) Proton flux distribution observed by the SWIM sensor mapped on the lunar map (generated by Clementine). The black line shows a contour of the lunar magnetic anomaly. (Right) Magnetic anomaly distribution model based on Lunar Prospector data. The same contour as in the left panel is overlaid here.

The current investigation was carried out with the Sub-keV Atom Reflecting Analyzer instrument which was developed in a collaboration between Sweden, India, Switzerland and Japan and flown onboard the Indian Chandrayaan-1 spacecraft. Scientists have mapped for the first time the energetic hydrogen atoms coming from the Moon, and found that up to one fifth of the solar wind protons reaching the lunar surface are reflected back to space.

This may be a general feature of the atmosphere-less bodies, such as Mercury, meteorites and several moons of the giant planets. “In fact, during the close encounter of the European Mars Express spacecraft with Phobos in 2008, we detected signatures of reflected solar wind protons also from the surface of the Martian moon Phobos,” says Dr. Futaana.

However, when Chandrayaan-1 flew over a magnetic anomaly (magnetized region on the Moon surface), the scientists detected significantly less reflected hydrogen atoms meaning that the solar wind had not reached the lunar surface. In fact, the solar wind was found to be strongly deflected by an aggregation of magnetic anomalies in the southern hemisphere of the lunar far side. “We detected a strong flux of deflected solar wind protons. This clearly indicates that magnetic anomalies can shield the from the incoming solar wind, in the same way as the magnetospheres of several planets in our solar system,” says Dr. Futaana.

“It all depends on how strong the solar wind ‘blows’. When the solar wind pressure is low, this ‘mini-magnetosphere’ expands causing stronger shielding,” adds Dr. Wieser, also of the Swedish Institute of Space Physics.

Explore further: How the Moon produces its own water

More information: -- Backscattered solar wind protons by Phobos, Futaana, Y., S. Barabash, M. Holmström, A. Fedorov, H. Nilsson, R. Lundin, E. Dubinin, and M. Fränz, J. Geophys. Res., doi:10.1029/2010JA015486 , in Press.
-- First observation of a mini-magnetosphere above a lunar magnetic anomaly using energetic neutral atoms, Martin Wieser, Stas Barabash, Yoshifumi Futaana, Mats Holmström, Anil Bhardwaj, R. Sridharan, M. B. Dhanya, Audrey Schaufelberger, Peter Wurz, and Kazushi Asamura, Geophys. Res. Lett. VOL. 37, L05103, 2010 doi:10.1029/2009GL041721

Related Stories

How the Moon produces its own water

October 15, 2009

( -- The Moon is a big sponge that absorbs electrically charged particles given out by the Sun. These particles interact with the oxygen present in some dust grains on the lunar surface, producing water. This ...

Scientists analyse solar wind from moon rock

April 10, 2006

Australian National University scientists preparing for the analysis of solar wind samples from NASA’s Genesis mission believe they have already measured solar wind particles in an analysis of lunar soil.

Energy simulation may explain turbulence mystery

February 26, 2009

( -- A new 3D model linking magnetic fields to the transfer of energy in space might help solve a physics mystery first observed in the solar wind 15 years ago.

Recommended for you

SpaceX to launch classified US govt payload Sunday

April 29, 2017

SpaceX on Sunday is scheduled to make its first military launch, with a classified payload for the National Reconnaissance Office, which makes and operates spy satellites for the United States.

Is dark matter 'fuzzy'?

April 28, 2017

Astronomers have used data from NASA's Chandra X-ray Observatory to study the properties of dark matter, the mysterious, invisible substance that makes up a majority of matter in the universe. The study, which involves 13 ...

Hubble's bright shining lizard star

April 28, 2017

In space, being outshone is an occupational hazard. This NASA/ESA Hubble Space Telescope image captures a galaxy named NGC 7250. Despite being remarkable in its own right—it has bright bursts of star formation and recorded ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (3) Sep 28, 2010
Magnetic Anomalies?!?!?!? YES!! go dig up those monoliths already!
1 / 5 (1) Sep 29, 2010
... image hyperon atlas fission geddon pion Moon core pi 2 system image lepton ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.