The Moon puts on camo

August 30, 2010 by Elizabeth Zubritsky
This detailed geologic map of Schrödinger basin, which formed when a huge object struck the moon, reveals a patchwork of lunar material, including the peak ring (inner brown ring), recent volcanic activity (red), cratering (yellow) and plains material (dark green and kelly green). Credit: NASA/Scott Mest

A new geologic map of the moon's Schrodinger basin paints an instant, camouflage-colored portrait of what a mash-up the moon's surface is after eons of violent events. The geologic record at Schrödinger is still relatively fresh because the basin is only about 3.8 billion years old; this makes it the moon's second-youngest large basin (it's roughly 320 kilometers, or 200 miles, in diameter).

Schrödinger is located near the moon's south pole, a region where pockets of permanent ice are thought to exist. The map will help researchers understand lunar and identify suitable landing sites for future exploration. Scott Mest, a research scientist with the Planetary Science Institute working at NASA's Goddard Space Flight Center in Greenbelt, Md., and his colleagues created this geologic map -- the most detailed one to date -- by combining topographic data from the Lunar Orbiter Laser Altimeter, a Goddard instrument aboard the 2009 , with images and spectral data from the earlier Clementine and Lunar Prospector missions.

Schrödinger is an example of an intriguing type of basin called a peak-ring. Like the basin rim (brown outer ring), the smaller and more fragmented peak ring (brown inner ring) is a mountainous region of crust that rose up after a huge object, probably measuring 35-40 kilometers, or about 21-25 miles, smacked into the here. These areas of raised crust are the oldest rocks in the basin and just about the only material that wasn't melted by the heat from the object's impact. The melted material was spewed in all directions and formed the plains. Patches of plains material can have slightly different textures and albedo (indicated by dark green and kelly green), probably because they cooled at different times. Fractures (black lines) formed in the basin floor as the material cooled.

Schrödinger Basin is one of the few areas near the moon's south pole with evidence of recent volcanic activity. This includes lava flows from volcanic activity on the surface (beige areas) as well as explosive eruptions from a vent inside the red area; this vent has brought up dark material that mantles the plains (red area, which is newer than the beige regions). Older volcanic material is spread over a wider range (gray and lime green). More recent cratering by smaller objects has scattered material (yellow areas) near the top of the basin. Next to that (very light green beside yellow) is a region with a knobby texture that suggests loose material that could have come from cratering outside the basin or from a landslide on the basin's rim.

Explore further: Biggest, Deepest Crater Exposes Hidden, Ancient Moon

Related Stories

Biggest, Deepest Crater Exposes Hidden, Ancient Moon

March 4, 2010

(PhysOrg.com) -- Shortly after the Moon formed, an asteroid smacked into its southern hemisphere and gouged out a truly enormous crater, the South Pole-Aitken basin, almost 1,500 miles across and more than five miles deep.

MESSENGER discovers an unusual impact basin on Mercury

April 30, 2009

A previously unknown, large impact basin has been discovered by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during its second flyby of Mercury in October 2008. The impact basin, ...

New high-res map suggests little water inside moon

February 12, 2009

(PhysOrg.com) -- The most detailed map of the Moon ever created has revealed never-before-seen craters at the lunar poles. The map is also revealing secrets about the Moon's interior -- and hinting about Mars's interior as ...

New lunar south polar maps from SMART-1

March 11, 2008

Newly-released images of the lunar south-polar region obtained by ESA’s SMART-1 are proving to be wonderful tools to zero-in on suitable study sites for potential future lunar exploration missions.

Recommended for you

SpaceX to launch classified US govt payload Sunday

April 29, 2017

SpaceX on Sunday is scheduled to make its first military launch, with a classified payload for the National Reconnaissance Office, which makes and operates spy satellites for the United States.

Is dark matter 'fuzzy'?

April 28, 2017

Astronomers have used data from NASA's Chandra X-ray Observatory to study the properties of dark matter, the mysterious, invisible substance that makes up a majority of matter in the universe. The study, which involves 13 ...

Hubble's bright shining lizard star

April 28, 2017

In space, being outshone is an occupational hazard. This NASA/ESA Hubble Space Telescope image captures a galaxy named NGC 7250. Despite being remarkable in its own right—it has bright bursts of star formation and recorded ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Shootist
5 / 5 (4) Aug 30, 2010
The peak ring in a crater this size will contain shattered, brecciated and fractured sub-crustal material uplifted some 20-30km and injected with melt bodies, pdfs and shatter cones.

http://www.lpi.us...ter3.pdf
yyz
5 / 5 (1) Aug 30, 2010
Shootist,

Thanks for the link to the impact cratering article; good review of the formation of complex craters. Btw Fig 3.11 on pg 11 happens to be a Lunar Orbiter image of Schroedinger itself!
Shootist
5 / 5 (1) Aug 30, 2010
Welcome.

And the photo shows off the peak ring better than the highlighted one in the article.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.