Autonomous quantum error correction technique proposed for quantum memories

August 4, 2010 By Lisa Zyga, feature

A diagram of the proposed quantum memory with autonomous quantum error control (QEC). Image credit: Kerckhoff, et al. (c)2010 APS.
( -- While words such as "powerful" and "efficient" are often used to describe the potential of quantum computing, these quantum systems can be very fragile at the same time. Errors in quantum systems can easily arise due to decoherence - which occurs when a quantum state interacts with its environment - as well as unwanted noise or defective components. In order to protect quantum systems from these problems, physicists use quantum error correction (QEC) techniques to identify and correct errors without disturbing the system.

In a recent study, physicists have developed a new QEC technique that can be directly embedded into quantum memories. Because the method is implemented "on-chip," it requires no external clocking or logic. In addition, all control operations are performed autonomously by an embedded , which is different than most previous QEC approaches. The researchers hope that the design could be useful for nanophotonics implementations and quantum-optical engineering.

“Good QEC designs can improve implementation efficiency by reducing the hardware and computational ‘overhead’ that is needed in the implementation of the QEC for a particular scheme,” coauthor Hendra Nurdin of Stanford University and the Australian National University told

In general, it’s much more difficult to design QEC methods than it is to design classical error correction methods because in classical methods, bits can simply be copied for redundancy. However, qubits cannot be copied in the same way due to the non-cloning theorem. Yet physicists can get around this limitation in a few ways, such as by encoding a single “logical” qubit (representing the information carried) in the of three “physical” qubits using a technique called the bit-flip code.

The new autonomous QEC technique is based on the bit-flip code and another similar strategy called the phase-flip code, and can protect the stored information against independent unwanted flips to any, but not more than one, of the physical qubits. Whereas previous QEC approaches usually involved discrete restoration steps, the new approach involves a continuous syndrome readout to diagnose and correct errors. In this approach, each physical qubit is strongly coupled to its own optical cavity. If an error occurs so that one of the physical qubits has its state flipped, two feedback signals are sent to the qubit to flip it back and correct the error. The system is autonomous in that probe signals are continuously providing feedback to the qubits: less than two feedback signals in the case of no errors, and two feedback signals in the case of an error.

“This QEC design has the potential to be embedded on the same hardware platform as the quantum memory, such as in , and has the potential for reduced hardware overhead requirements because it does not require external clocking and logic to operate, nor does not it require interfacing to measurement devices,” Nurdin said. “Moreover, since all processing is performed coherently, no classical computations are required to determine the corrective feedback signals.”

Although the current design is just a proposal, the physicists explain that the circuitry could be realized with available technology, such as solid-state qubits coupled to electromagnetic resonators and waveguides. In the future, the scientists also plan to find ways to extend the design to QEC feedback networks that can correct a wider variety of errors.

Explore further: First International Conference on Quantum Error Correction

More information: Joseph Kerckhoff, et al. “Designing Quantum Memories with Embedded Control: Photonic Circuits for Autonomous Quantum Error Correction.” Physical Review Letters 105, 040502 (2010).


Related Stories

First International Conference on Quantum Error Correction

October 1, 2007

Quantum error correction of decoherence and faulty control operations forms the backbone of all of quantum information processing. In spite of remarkable progress on this front ever since the discovery of quantum error correcting ...

Turning down the noise in quantum data storage

January 19, 2010

Researchers who hope to create quantum computers are currently investigating various methods to store data. Nitrogen atoms embedded in diamond show promise for encoding quantum bits (qubits), but the process of reading the ...

Straightening messy correlations with a quantum comb

November 23, 2009

Quantum computing promises ultra-fast communication, computation and more powerful ways to encrypt sensitive information. But trying to use quantum states as carriers of information is an extremely delicate business. Now ...

Recommended for you

Rapid and continuous 3-D printing with light

January 22, 2019

Three-dimensional (3-D) printing, also known as additive manufacturing (AM), can transform a material layer by layer to build an object of interest. 3-D printing is not a new concept, since stereolithography printers have ...

Scientists discover new quantum spin liquid

January 22, 2019

An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

Toward ultrafast spintronics

January 21, 2019

Electronics have advanced through continuous improvements in microprocessor technology since the 1960s. However, this process of refinement is projected to stall in the near future due to constraints imposed by the laws of ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Aug 04, 2010
Lisa! This article needs more editing. "The non-cloning theorem"? Really?

Otherwise, really neat stuff.
not rated yet Aug 05, 2010
Lisa! This article needs more editing. "The non-cloning theorem"? Really?

Otherwise, really neat stuff.

Google is your friend. Anyone with a basic curiosity about QM should already know this.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.