Physicists get an up-close look at synthetic quantum materials

June 17, 2010 By Steve Bradt, Harvard University
This sketch shows how a quantum gas microscope hones in on individual atoms in the gas.

( -- Physicists at Harvard University have, for the first time, tracked individual atoms in a gas cooled to extreme temperatures as the particles reorganized into a crystal, a process driven by quantum mechanics. The research, described this week in the journal Science, opens new possibilities for particle-by-particle study and engineering of artificial quantum materials.

"Much of modern technology is driven by engineering materials with novel properties, and the bizarre world of quantum mechanics can contribute to this engineering toolbox," says Markus Greiner, an assistant professor of physics at Harvard who led the research team. "For example, quantum materials could be used to turn heat into electricity, or in cables that transport electricity very efficiently in a ."

"The challenge in understanding the behavior of such materials is that although we have many ideas about how they might work, we lack the tools to verify these theories by looking at and manipulating these materials at the most basic ," Greiner adds. "This is the problem we have set out to tackle."

To circumvent the challenges of studying such materials, Greiner and his colleagues created an artificial quantum material, a cold gas of atoms moving in a lattice made of light. This pancake-shaped cloud, known as a Bose-Einstein condensate, allowed them to study the physics of quantum materials at a much larger scale, essentially simulating what happens in a real material.

The physicists watched individual atoms participate in a dramatic collective transition between two different states of matter, similar to the transition that happens when water freezes into ice. But this transition was driven not by temperature, but by the researchers' manipulation of interactions between the atoms.

"We counted the number of atoms at each site of the lattice," says co-author Waseem Bakr, a graduate student in Harvard's Department of Physics. "When the interactions between the atoms are weak, the number of atoms varies significantly in different sites due to uncertainty that is intrinsic to . When we increase the interactions, these fluctuations vanish, and the atoms arrange into an almost perfect crystal."

Such a transition from a superfluid state -- in which particles can move with no resistance -- to an insulating Mott state -- where the atoms can no longer move -- was first observed by Greiner and colleagues in 2001. However, a quantum gas microscope developed last year by Greiner's group now allows observation of individual atoms as they undergo this transition.

"This microscope is a versatile tool which should be able to shed light on many other phenomena related to quantum materials, such as magnetic materials," Greiner says. "It could even be used for computations that require enormous resources on current computers."

While a simulation similar to the current experiment could, in principle, be carried out on a computer, Greiner says such an approach would quickly become infeasible for a system with more than a few dozen .

Explore further: Quantum gas microscope offers glimpse of quirky ultracold atoms

Related Stories

Discovery could pave the way for quantum computing

March 18, 2010

( -- Two experimental systems at the forefront of modern physics research -- a single trapped ion and a quantum atomic gas -- have been combined for the first time by researchers at Cambridge.

Cross-Dressing Rubidium May Reveal Clues for Exotic Computing

February 25, 2009

( -- Neutral atoms--having no net electric charge--usually don't act very dramatically around a magnetic field. But by “dressing them up” with light, researchers at the Joint Quantum Institute, a collaborative ...

Recommended for you

Study: Pulsating dissolution found in crystals

January 17, 2018

When German researchers examined time-lapse images of dissolving crystals at the nanoscale, they found a surprise: Dissolution happened in pulses, marked by waves that spread just like ripples on a pond.

X-rays reveal chirality in swirling electric vortices

January 16, 2018

Scientists used spiraling X-rays at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) to observe, for the first time, a property that gives handedness to swirling electric patterns – dubbed ...

Slow 'hot electrons' could improve solar cell efficiency

January 16, 2018

Photons with energy higher than the band gap of the semiconductor absorbing them give rise to what are known as hot electrons. The extra energy in respect to the band gap is lost very fast, as it is converted into heat and ...

Quan­tum physics turned into tan­gi­ble re­al­ity

January 16, 2018

ETH physicists have developed a silicon wafer that behaves like a topological insulator when stimulated using ultrasound. They have thereby succeeded in turning an abstract theoretical concept into a macroscopic product.


Adjust slider to filter visible comments by rank

Display comments: newest first

Jun 19, 2010
This comment has been removed by a moderator.
not rated yet Jun 21, 2010
well in a sence nuclear fusion and fision is transmutation... so

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.