The world's smallest microlaser

The world's smallest microlaser
The centerpiece of the new microlaser is the electric resonator, consisting of two semi-circular capacitors that are connected via an inductor (here, a scanning electron microscope image). The color intensity represents the strength of the electrical field; the color itself, the respective polarity. (Photo: ETH Zurich)

ETH-Zurich physicists (Switzerland) have developed a new kind of laser that shatters the boundaries of possibility: it is by far the smallest electrically pumped laser in the world and one day could revolutionize chip technology.

It took a good one and a half years from the idea to its inception; a time when Christoph Walther, a PhD student in the Quantum Optoelectronics Group at ETH Zurich, spent days and nights in the FIRST lab. This was because ETH Zurich’s state-of-the-art clean-room facility provided him with the ideal conditions to set a new record in : the physicist teamed up with four colleagues and developed the smallest electrically pumped laser in the world to date.

Much smaller than the wavelength

It’s 30 micrometers long - that’s 30 millionths of a meter - eight micrometers high and has a wavelength of 200 micrometers. This makes the laser considerably smaller than the wavelength of the light it emits - a scientific first. After all, lasers normally can’t be smaller than their wavelength, the reason being that in conventional lasers light waves cause an optic to oscillate - much like do to the soundbox of a guitar. In doing so, the basically “travel” back and forth between two mirrors. The principle only works if the mirrors are larger than the wavelength of the laser. Consequently, normal lasers are limited in terms of their size.

Other researchers have endeavored to push the boundaries; “But by developing a completely new laser concept we were able to go quite a way below the limit”, says Christoph Walther.

Inspired by electronics

In developing their concept, Christoph Walther and some of his team mates under his supervisor Jérôme Faist, professor and head of ETH Zurich’s Institute of Quantum Electronics, were inspired by electronics. “Instead of the usual optic resonators, we use an electrical resonant circuit made up of an inductor and two capacitors”, explains Walther. The light is effectively “captured” in it and induced into self-sustaining electromagnetic oscillations on the spot using an optical amplifier.

“This means the size of the resonator is no longer limited by the wavelength of the light and can in principle - and that’s what makes it so special - be scaled down to whatever size you want”. This prospect especially makes the microlaser interesting for chip manufacturers - as an optic alternative to the transistors. “If we manage to approximate the transistors in terms of size using the microlasers, one day they could be used to build electro-optic chips with an extremely high concentration of electronic and optic components”, says Christoph Walther. These could one day considerably speed up the exchange of data on microprocessors.

Explore further

Building a more versatile laser

More information: Walther C, Scalari G, Amanti MI, Beck M, Faist J. Microcavity Laser Oscillating in a Circuit-Based Resonator. Science, 19 March 2010: Vol. 327. no. 5972, pp. 1495 - 1497. doi:10.1126/science.1183167
Provided by ETH Zurich
Citation: The world's smallest microlaser (2010, March 23) retrieved 24 June 2019 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Mar 23, 2010
This comment has been removed by a moderator.

Mar 23, 2010
Now THAT is good stuff!

Interesting would be how much thermal loss it has and how the conversion efficiency is (not that the first prototype will be very good but I bet the geometry can still be optimized)

Way to go in showing that resonators don't need to be as big as (half) the wavelength.

Mar 23, 2010
This comment has been removed by a moderator.

Mar 24, 2010
Seeing this applied in liquid polymer substrates for SLM's would be radical.

Mar 24, 2010
But does it really lase? I don't see any avalanche like mechanism here, typical for lasers.

Mar 26, 2010
Can it shoot down mosquitoes?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more