Molding the Future of Plastic Electronic Production

March 16, 2010 by Kendra Snyder
Illustrations of PTCBI films with two different orientations. Researchers found that those laying down (left) exhibit slower transport than those that stand up (right).

( -- E-readers that can be bent and folded, "smart" bandages that signal when they need changing based on oxygen levels, and biodegradable radio frequency identification tags that help companies track and manage stock - these are all real possibilities in the field of organic electronics, which uses carbon-based materials that are intrinsically semiconductors. Recently, using the NSLS, a group of researchers from the National Institute of Standards and Technology (NIST), Arizona State University, and the University of Oulu, Finland, analyzed one promising organic semiconducting material in an effort to bring these technologies, and many more, to the marketplace.

As opposed to conventional electronics, which feature inorganic metal conductors such as silicon or copper, - also known as plastic electronics - can be manufactured using technology as common as an ink jet printer.

This makes possible the production of lightweight, flexible, and robust electronics at low cost. Plastic electronics don't replace silicon technologies, and they aren't likely to fuel the mainstream electronic industry's overall drive to produce ever-smaller and ever-faster devices. Instead, organic electronics offer the possibility of brand new, complementary markets, that is, if industries are able to easily create reliable products.

"With organic materials, reproducibility and reliability are hard to achieve because the ink dries differently almost every time," said NIST researcher Dean DeLongchamp. "You never know exactly what you're going to get."

In this study, the researchers analyzed the structure of dried films made from a particular organic semiconductor often used in , PTCBI. Classified as an "n-type" semiconductor, PTCBI is one of the rare commercially available organic-electronic materials that actually transports electrons. The other kind of organic semiconductors, known as p-type, transmit positive charges - called "holes" because the moving areas of positive charge are places where an electron is missing. In order to work, a complementary organic circuit needs both p- and n-type semiconductors.

At NSLS beamline U7A, the researchers used near-edge x-ray absorption spectroscopy and grazing-incidence x-ray diffraction to determine the orientation and order of PTCBI as it was formed on different surfaces. Their results, which are published in the August 3, 2009, edition of Advanced Functional Materials, are surprising.

"We found that the contact face of PTCBI depends on what type of surface it was deposited upon, which is very unusual," DeLongchamp said. "Typically, we find that an organic semiconductor's crystals change size with the dielectric substrate it is deposited on. But here, the crystals are actually oriented differently on different dielectrics."

The researchers then linked the orientation of the PTCBI crystals to performance: In general, substrates that allow the crystal's individual molecules to stand up straight — and therefore have a large amount of electronic overlap — exhibit the fastest transport. But substrates that force the molecules to lay down flat exhibit poorer performance.

"These fundamental relationships provide practical rules for the synthesis and processing of organic electronics," DeLongchamp said. "The many potential opportunities for performance enhancement indicate a promising future ahead for organic electronics."

Explore further: A new structural view of organic electronic devices

Related Stories

A new structural view of organic electronic devices

September 12, 2005

Although still in the qualifying rounds, U.S. researchers are helping manufacturers win the race to develop low-cost ways to commercialize a multitude of products based on inexpensive organic electronic materials -- from ...

SSRL Aids Development of Plastic Electronics

May 4, 2006

For close to a decade, researchers have been trying to improve the performance of plastic semiconductors to the level of amorphous silicon—the semiconductor used in low-cost electronics such as photovoltaic cells for solar ...

Molecular breakthrough for plastic electronics

April 12, 2005

The potential applications for flexible plastic electronics are enormous -- from electronic books to radio frequency identification (RFID) tags to electronics for cell phones, personal digital assistants (PDAs) and laptop ...

Recommended for you

Two holograms in one surface

December 12, 2017

A team at Caltech has figured out a way to encode more than one holographic image in a single surface without any loss of resolution. The engineering feat overturns a long-held assumption that a single surface could only ...

New silicon structure opens the gate to quantum computers

December 12, 2017

In a major step toward making a quantum computer using everyday materials, a team led by researchers at Princeton University has constructed a key piece of silicon hardware capable of controlling quantum behavior between ...

Electromagnetic water cloak eliminates drag and wake

December 11, 2017

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while simultaneously helping it avoid detection.

Three kinds of information from a single X-ray measurement

December 11, 2017

Whatever the size of mobile phones or computers are, the way in which such electronic devices operate relies on the interactions between materials. For this reason, engineers as well as researchers need to know exactly how ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.