Researchers create 'handshaking' particles

March 24, 2010

Physicists at New York University have created "handshaking" particles that link together based on their shape rather than randomly. Their work, reported in the latest issue of the journal Nature, marks the first time scientists have succeeded in "programming" particles to join in this manner and offers a type of architecture that could enhance the creation of synthetic materials.

"We expect these interactions to offer unprecedented opportunities for engineering 'smart' composite , new , and microscopic machinery with mobile parts," wrote the researchers, part of NYU's Center for Soft Matter Research.

The process is centered on creating and manipulating colloids—particles suspended within a fluid medium. Colloidal dispersions comprise such everyday items as milk, gelatin, glass, and porcelain.

Working with microscopic particles—25 placed together, end-to-end, would match the width of a strand of human hair—the researchers developed a "lock and key" mechanism that would allow specific particles to join together much in the way Pac-Man would swallow dots in the 1980s video game.

The "key" is any spherical particle. Creating the "lock," however, required a multi-step polymerization process. To do it, the researchers took a droplet of oil and placed it in water. The process resulted in a hardened outer shell, which would then buckle to form an indentation, or Pac-Man mouth, allowing it to bind to the other sphere ("the key").

The work is part of scientists' ongoing efforts to understand and control how particles self-assemble to make new materials. Complex materials cannot be constructed particle by particle; rather, they must be directed to self-assemble, which would produce these materials in an efficient manner. However, manipulating the self-assembly process has proven elusive to scientists because their understanding of how particles interact is limited.

By creating a process by which particles come together to form an aggregate, physicists at NYU's Center for Research have marked a next step in understanding and developing the self-assembly process.

Explore further: Gluing particles together on the micro- and nano-scale

Related Stories

Gluing particles together on the micro- and nano-scale

June 14, 2009

Researchers at New York University have created a method to precisely bind nano- and micrometer-sized particles together into larger-scale structures with useful materials properties. Their work, which appears in the latest ...

Sophisticated nano-structures assembled with magnets (Video)

February 18, 2009

(PhysOrg.com) -- What do Saturn and flowers have in common? As shapes, both possess certain symmetries that are easily recognizable in the natural world. Now, at an extremely small level, researchers from Duke University ...

New Self-Assemble Building Blocks for Nanotechnology

August 19, 2004

University of Michigan researchers have discovered a way to self-assemble nanoparticles into wires, sheets, shells and other unusual structures using sticky patches that make the particles group themselves together in programmed ...

Recommended for you

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Simonsez
5 / 5 (2) Mar 24, 2010
I like how they refer to the buckling "lock" indentation as a "Pac-Man mouth". Nostalgia. :)

This is one of those articles that makes my hair stand on end - people discovering new ways to use the same building blocks we've come to know and love, which as an end result has the potential to create new meta-materials with astounding properties. Other such "recent" advancements, relatively speaking, include graphene and graphene-like molecules as well as metallic glass. These are the things that drive me toward materials science as a hobby, a passion and as a scientific discipline and career path.
seneca
not rated yet Mar 27, 2010
You can see the particle shapes here

http://physicswor...ws/42091

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.