Cassini Shows Saturnian Roller Derby, Strange Weather

March 18, 2010
This natural color view from the Cassini spacecraft highlights the myriad gradations in the transparency of Saturn's inner rings. Image credit: NASA/JPL/Space Science Institute

(PhysOrg.com) -- The seemingly serene orb of Saturn is in fact a gas giant with extraordinary patterns of charged particles and rough and tumble roller derbies for rings. Such are the findings of NASA's Cassini spacecraft since its arrival at Saturn in 2004 - they are combined in two review papers to be published in the March 19 issue of the journal Science.

From our vantage point on Earth, Saturn may look like a peaceful orb with rings worthy of a carefully raked Zen garden, but NASA's has been shadowing the gas giant long enough to see that the rings are a rough and tumble roller derby. It has also revealed that the planet itself roils with strange weather and shifting patterns of charged particles. Two review papers to be published in the March 19 issue of the journal Science synthesize Cassini's findings since arriving at Saturn in 2004.

"This rambunctious system gives us a new feel for how an early solar system might have behaved," said Linda Spilker, a planetary scientist and the new Cassini project scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "This kind of deep, rich data can only be collected by an orbiting spacecraft, and we look forward to the next seven years around Saturn bringing even more surprises."

In the paper describing the elegant mess of activity in the rings, lead author Jeff Cuzzi, Cassini's interdisciplinary scientist for rings and dust who is based at NASA Ames Research Center, Moffett Field, Calif., describes how Cassini has shown us that collisions are routine and chunks of ice leave trails of debris in their wakes. Spacecraft data have also revealed how small moons play tug-of-war with material and how bits of rubble that would otherwise join together to become moons are ultimately ripped apart by the gravitational pull that Saturn exerts.

During , the period when sunlight hits the rings exactly edge-on, Cassini witnessed rings that are normally flat - about tens of meters (yards) thick - being flipped up as high as the Rocky Mountains.

The spacecraft has also shown that the rings are composed mostly of water ice, with a mysterious reddish contaminant that could be rust or small similar to those found in red vegetables on Earth.

"It has been amazing to see the rings come to life before our very eyes, changing even as we watch, being colorful and taking on a tangible, 3-D nature," Cuzzi said. "The rings were still a nearly unstructured object in even the best telescopes when I was a grad student, but Cassini has brought us an intimate familiarity with them."

Cuzzi said Cassini scientists were surprised to find such fine-scale structure nearly everywhere in the rings, forcing them to be very careful about generalizing their findings across the entire ring disk. The discovery that the rings are clumpy has also called into question some of the previous estimates for the mass of the rings because there might be clusters of material hidden inside of the clumps that have not yet been measured.

In the review paper on Saturn's atmosphere, ionosphere and magnetosphere, lead author Tamas Gombosi, Cassini's interdisciplinary scientist for magnetosphere and plasma science who is based at the University of Michigan in Ann Arbor, describes how Cassini helped scientists understand a south polar vortex that has a diameter 20 to 40 times that of a terrestrial hurricane, and the bizarrely stable hexagon-shaped jet stream at the planet's north pole. Cassini scientists have also calculated a variation in Saturn's wind speeds at different altitudes and latitudes that is 10 times greater than the wind speed variation on Earth.

According to Gombosi's paper, Cassini has also shown us that the small moon Enceladus, not the sun or Saturn's largest moon Titan, is the biggest contributor of charged particles to Saturn's magnetic environment. The charged particles from Enceladus, a moon that features a plume of water vapor and other gases spraying from its south polar region, also contribute to the auroras around the poles of the planet.

"We learned from Cassini that the Saturnian magnetosphere is swimming in water," Gombosi said. "This is unique in the solar system and makes Saturn's plasma environment particularly fascinating."

Of course, Cassini's intense investigation has opened up a host of new mysteries. For example, Cassini has shown us images of occasional cannon-ball-like objects that rocket across one of the outer rings known as the F ring, without many clues about where they came from or why they quickly disappear.

Learning more about a kind of radio emission known as "kilometric radiation" at Saturn has unsettled debates about the planet's rotation rate rather than settled them. While the regular periods of kilometric radiation have given scientists a sense of the rotation rate at Jupiter, has clocked different periods for the radiation during NASA's Voyager flybys in 1980 and 1981 and the nearly six years of Cassini's investigations. The modulations vary by about 30 seconds to a minute, but they shouldn't be varying at all. The inconsistency may be related to a source in the magnetic bubble around the planet rather than the core of the , but scientists are still debating.

"Cassini has answered questions we were not even smart enough to ask when the mission was planned and raised a lot of new ones," Cuzzi said. "We are hot on the trail, though."

Explore further: Saturn's rings viewed in the mid-infrared show bright cassini division

Related Stories

An Interview with former NASA astronaut Mike Fossum

February 20, 2017

Mike Fossum is a shining example for astronaut wannabes shooting for the stars. His story undeniably proves that dreams of space voyages come true if you have the motivation and courage to pursue them. In an interview with ...

A proposal for Juno to observe the volcanoes of Io

January 30, 2017

Jupiter may be the largest planet in the solar system with a diameter 11 times that of Earth, but it pales in comparison to its own magnetosphere. The planet's magnetic domain extends sunward at least 3 million miles (5 million ...

Recommended for you

Stargazers applaud as moon eclipses sun

February 26, 2017

Stargazers applauded as they were plunged into darkness Sunday when the moon passed in front of the sun in a spectacular "ring of fire" eclipse.

'Ring of fire' eclipse treat for southern skygazers

February 24, 2017

A spectacular "ring of fire" solar eclipse Sunday will regale skygazers in South America and southern Africa, with seafarers in the nearby Atlantic getting a front-row view too, astronomers say.

Vast luminous nebula poses a cosmic mystery

February 23, 2017

Astronomers have found an enormous, glowing blob of gas in the distant universe, with no obvious source of power for the light it is emitting. Called an "enormous Lyman-alpha nebula" (ELAN), it is the brightest and among ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.