Spying on Plastic Production

January 6, 2010, Wiley

(PhysOrg.com) -- Real-time monitoring of high-density polyethylene (HDPE) production is now possible. In an article in the journal Macromolecular Reaction Engineering, Professor Rolf Mülhaupt and his student Rainer Xalter of Albert-Ludwigs University in Freiburg, Germany, describe how they use a combination of laser reflectance measurements and video monitoring to follow the polymerization of ethylene in slurries in standard commercial-scale reactors. They watch the slurries as the plastics grow under different conditions, and are able to use the results to explain variations in efficiency and product range.

Polyethylene is the most widely used plastic today. Also known as polythene or polyethene, it is an integral part of modern life, being used in such items as domestic water pipes, plastic bags, outdoor furniture, and rubbish bins. Being highly recyclable, its applications are likely to increase, so improving efficiency of production is important in this world of limited petrochemical resources. If producers can monitor precisely what is happening inside their reactors, fine-tuning is possible and the product quality is easier to control. The possibility of developing new catalysts and improving current systems is also very real.

HDPE, the most common form of , is produced in catalytic slurries. Current methods for monitoring these types of reactions have involved off-line monitoring or the use of special cells without stirring. Stirring is necessary in commercial polyethylene production, but it plays havoc with standard particle monitoring techniques, and it is the particles that must be under constant surveillance if the reaction is to be followed closely.

In slurries, polyolefins (polyethylene is the simplest example) are made using supported Ziegler and metallocene catalysts, which assist the small olefin, or alkene, molecules to break bonds and join together into larger units called polymers. The polymer (or ) particles grow on a macroscopic scale as, simultaneously, the catalyst breaks up. According to the authors, “This very complex interplay of polymer particle growth and catalyst particle fragmentation governs polymerization kinetics and as well as polymer particle morphologies and bulk densities.” In gas-phase reactions, optical microscopy has been combined with video to effectively monitor particle growth in-line. Rainer and Mülhaupt have taken this basic idea and developed it to a new level to enable it be applied to stirred slurries, which are far more complex environments to observe.

The new technique involves using a LasentecTM “Particle Vision and Measurement” (PVM) probe developed by Mettler-Toledo GmbH, which, the authors explain, “makes video microscopic images of moving particles technically feasible via CCD camera-mediated imaging using a pulsed light source”, combined with a Lasentec “Focused Beam Reflectance Measurement” (FBRM) probe developed by the same company. The FBRM probe “employs a rotating focused laser beam which is scattered back at individual particles at or close to the focal point of the laser beam.” Mathematical evaluation of the duration and intensity of the backscattered light is used to determine particle size distributions.

As the scientists explain, “While the FBRM technique delivers well-founded statistical data regarding the evolution of the particle size distribution over time, the PVM probe yields high-quality images providing detailed information on size and shape of the particle species being present in the respective stages of the process.” Methods for correlating the results with reaction kinetics were developed, and results from both probes compared well with those obtained from off-line monitoring for a variety of reaction scenerios. Although only polyethylene was investigated in this paper, application to other polyolefin slurry systems is expected to be straightforward. Application to copolymerization reactions is expected to yield exciting results.

Explore further: Polymerization From the Individual Molecule's Point of View

More information: “On-line Monitoring of Polyolefin Particle Growth in Catalytic Olefin Slurry Polymerization by means of LasentecTM Focused Beam Reflectance Measurement (FBRM) and Video Microscopy (PVM) Probes”, R. Xalter and R. Mülhaupt, Macromol. React. Eng. 2010, 4, 25. doi.wiley.com/10.1002/mren.200900048

Related Stories

Polymerization From the Individual Molecule's Point of View

December 18, 2007

Plastics are becoming more and more important and are an indispensable part of modern life. Scientists are thus interested in clearing up the details of polymerization processes, in which individual molecular building blocks ...

Tracing ultra-fine dust

October 5, 2009

Limit values for fine dust emissions are based on total particle weight. It is the ultra-fine particles, however, that are particularly harmful to health. A new technique separates them by size and identifies their composition ...

Chemists reinvent the science and industry of making plastics

October 12, 2006

Chemists at the University of Pennsylvania have created a new process for free radical polymerization, the chemical reaction responsible for creating an enormous array of everyday plastic products, from Styrofoam cups to ...

Better track leads to new particles

December 7, 2006

In particle accelerators new particles often arise as a result of collisions between elementary particles. However the track left by these particles is often difficult to trace. Dutch researcher Thijs Cornelissen developed ...

Recommended for you

A protein that self-replicates

February 22, 2018

ETH scientists have been able to prove that a protein structure widespread in nature – the amyloid – is theoretically capable of multiplying itself. This makes it a potential predecessor to molecules that are regarded ...

Newly designed molecule binds nitrogen

February 22, 2018

Wheat, millet and maize all need nitrogen to grow. Fertilisers therefore contain large amounts of nitrogenous compounds, which are usually synthesised by converting nitrogen to ammonia in the industrial Haber-Bosch process, ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 06, 2010
very cool. boring , but taking a closer look is sure to lead to some interesting knowledge.
not rated yet Jan 10, 2010
There is something to be said for the German mind's mechanical aptitude and it's ability to apply it everywhere, even in chemical reactions, in very useful and unique ways. This new technology like so many others they've pioneered is impressive. Once again it leaves me wondering if the skill is rooted in environment or genetics. Maybe it's time to do a little research project on the side, see if I can determine the frequency at which the aptitude is displayed by ethnic Germans raised and schooled outside Germany. It wouldn't definitively answer any questions but could provide a clue. If it remains high outside the nation it may indicate genes, if not it may be environment. I have to admit I'm a bit jealous since I'm proficient in a number of areas but have trouble overlapping them reducing my ability to fully utilize the knowledge I've gained in application. It's a little frustrating working on a problem, discovering another's solution, you had it, just couldn't see it.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.