With stimulus aid, scientists hope to mimic nature's dynamos

(PhysOrg.com) -- In the cosmos, all celestial objects - planets, stars, galaxies and clusters of galaxies - have magnetic fields. On Earth, the magnetic field of our home planet is most easily observed in a compass where the needle points north.

But the origin of magnetic fields in the universe — including Earth's — remains a puzzle of cosmology despite many determined efforts by scientists to ferret out the secrets of how they first arose. Now, with the help of $2.4 million in stimulus funding from the National Science Foundation, University of Wisconsin-Madison scientists will attempt to generate a magnetic field in precisely the same fashion as a planet or galaxy: by building and operating a plasma dynamo to explore the self-generation of magnetic fields.

"We don't know why there are magnetic fields in the universe," says UW-Madison professor of astronomy Ellen Zweibel, who, along with UW-Madison physics professor Cary Forest, will lead the new initiative. "They didn't come out in the Big Bang. We don't know how they originated or are sustained."

The crucible for the study of cosmic magnetic fields will be the Plasma Dynamo Facility in Sterling Hall, the heart of which will be a three-meter diameter spherical vessel that will contain the same kind of plasmas observed in space. Plasmas, sometimes referred to as the fourth state of matter, are superheated gases where the atoms that make up the gas have been stripped of all of their electrons leaving behind a conducting, highly electrified collection of and free electrons.

The sun, for example, is a plasma and, ironically, were it not for the Earth's magnetic field, the solar winds generated by the sun would scorch our planet. The atmosphere of Mars, some scientists think, was blasted away by when its dynamo stopped.

Zweibel notes that there are important distinctions between planetary dynamos, which are generated typically in the molten metal at the core of a planet, and the dynamos in stars and galaxies, which are powered by plasmas. Both, however, generate critical magnetic fields, and what sparked the different types of dynamos is unknown in both instances.

"This plasma dynamo experiment will allow us to study for the first time in the laboratory how plasma can put energy into a instead of taking energy out," adds Forest, an expert on nature's dynamos who has built similar devices that use molten metal instead of plasma to spontaneously generate magnetic fields. Now, the only way scientists can study astrophysical plasmas is by observing and taking spectra from stars and other objects, and through the occasional direct sampling of a plasma by spacecraft designed to scoop up particles in space.

The plasma dynamo facility will be the first of its kind in the world and promises to take the quest for the secrets of the magnetic fields in the universe to another level: "The ability to pull out features in plasmas that are not present in the simpler liquid metal systems is the key," says Zweibel, an expert in plasma astrophysics.

Provided by University of Wisconsin-Madison (news : web)

Citation: With stimulus aid, scientists hope to mimic nature's dynamos (2009, October 9) retrieved 28 June 2024 from https://phys.org/news/2009-10-stimulus-aid-scientists-mimic-nature.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

The Dynamo in the Cornfield

0 shares

Feedback to editors