Mars magnetic field mystery explained

September 25, 2008
Mars

(PhysOrg.com) -- So much attention has been paid to the similarities and differences between Earth and Mars that we often look to the ancient red planet for signposts in our own planet's future. A U of T physicist, whose work is published this week in the prestigious international journal Science, may have explained some key differences in the magnetic fields of the two planets.

On Mars, the magnetic fields frozen into surface rocks over four-billion-years-old provide a glimpse of an ancient era when the planet possessed a global magnetic field generated by motions in its fluid core.

"If Mars' past magnetic field generation process -- called a dynamo -- worked like Earth's does today, then we would expect similar magnetic field strengths in both the northern and southern hemispheres," said U of T Professor Sabine Stanley, lead author of the study.

"But Mars' crustal magnetic fields are strongest only in the southern hemisphere," she said.

This asymmetry in magnetic field strengths is correlated with another odd ancient crustal feature on Mars. The northern hemisphere crust is thinner and lower than the southern hemisphere crust. Possible explanations for this dichotomy include a giant low-angle impact in the northern hemisphere, or a large-scale hemispheric circulation pattern in Mars' mantle from which the crust formed. Both of these scenarios have implications for the temperature at the core-mantle boundary of Mars, making the northern boundary warmer than the southern boundary.

Stanley and colleagues from MIT and Brown University wondered if the crustal dichotomy formation process could also explain the hemispheric magnetic intensity differences.To investigate, they created a computer simulation for Mars' past dynamo that takes into account the hemispheric temperature differences imposed by Mars' mantle on the core. In the resulting simulation, strong magnetic fields were only generated in the southern hemisphere.

"It is encouraging when the solution to one problem also solves another problem," said Stanley. Previous hypotheses for the magnetic field asymmetry relied on processes that altered the northern hemisphere crust after Mars' dynamo died. "In our model, the proposed formation mechanism for the crustal dichotomy also explains the strange magnetic fields frozen into the rocks at that time."

The ancient magnetic field pattern also has implications for Mars' ancient atmosphere. It is difficult to explain the rapid loss of Mars' ancient atmosphere if the planet possessed a strong magnetic field at that time.

"Our model of Mars' past dynamo may help since the magnetic field would only be strong in the southern hemisphere. Atmospheric removal could still be efficient in the northern hemisphere," explained Stanley.

Provided by University of Toronto

Explore further: MAVEN mission finds Mars has a twisted tail

Related Stories

Potential human habitat located on the moon

October 18, 2017

A study published in Geophysical Research Letters confirms the existence of a large open lava tube in the Marius Hills region of the moon, which could be used to protect astronauts from hazardous conditions on the surface.

Space radiation won't stop NASA's human exploration

October 13, 2017

While it's true that space radiation is one of the biggest challenges for a human journey to Mars, it's also true that NASA is developing technologies and countermeasures to ensure a safe and successful journey to the red ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Keter
3.3 / 5 (6) Sep 25, 2008
Why are we apparently assuming that Mars is "ancient" when compared to Earth? Shouldn't they be about the same "age"? I think this may be a fundamental flaw in the theory.
holmstar
5 / 5 (3) Sep 25, 2008
Why are we apparently assuming that Mars is "ancient" when compared to Earth? Shouldn't they be about the same "age"? I think this may be a fundamental flaw in the theory.


The general consensus is that Earth and Mars ARE about the same age...

Ancient is only referring to the time that Mars had a strong magnetic field and a relatively thick atmosphere.

Whereas Earth still currently has both of those, Mars lost them in "ancient" times.
D666
5 / 5 (4) Sep 25, 2008
Why are we apparently assuming that Mars is "ancient" when compared to Earth? Shouldn't they be about the same "age"? I think this may be a fundamental flaw in the theory.


If you are referring to the use of the word in the first sentence, I think that's just bad reportage. Generally though, Mars' surface is probably considered old in comparison to Earth's, simply because tectonics stopped so long ago.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.