Nanotech researchers develop artificial pore

September 28, 2009

(PhysOrg.com) -- Using an RNA-powered nanomotor, University of Cincinnati (UC) biomedical engineering researchers have successfully developed an artificial pore able to transmit nanoscale material through a membrane.

In a study led by UC professor Peixuan Guo, PhD, members of the UC team inserted the modified core of a nanomotor, a microscopic biological machine, into a lipid membrane. The resulting channel enabled them to move both single- and double-stranded DNA through the membrane.

Their paper, "Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores," will appear in online publication of the journal Nature Nanotechnology, Sept. 27, 2009. The engineered channel could have applications in nano-sensing, , drug loading and DNA sequencing, says Guo.

Guo derived the nanomotor used in the study from the biological motor of bacteriophage phi29, a virus that infects bacteria. Previously, Guo discovered that the bacteriophage phi29 DNA-packaging motor uses six molecules of the genetic material RNA to power its DNA genome through its protein core, much like a screw through a bolt.

"The re-engineered motor core itself has shown to associate with lipid membranes, but we needed to show that it could punch a hole in the lipid membrane," says David Wendell, PhD, co-first author of the paper and a research assistant professor in UC's biomedical engineering department. "That was one of the first challenges, moving it from its native enclosure into this engineered environment."

In this study, UC researchers embedded the re-engineered nanomotor core into a lipid sheet, creating a channel large enough to allow the passage of double-stranded DNA through the channel.

Guo says past work with biological channels has been focused on channels large enough to move only single-stranded .

"Since the genomic DNA of human, animals, plants, fungus and bacteria are double stranded, the development of single pore system that can sequence double-stranded DNA is very important," he says.

By being placed into a lipid sheet, the artificial membrane channel can be used to load double-stranded DNA, drugs or other therapeutic material into the liposome, other compartments, or potentially into a cell through the membrane.

Guo also says the process by which the DNA travels through the membrane can have larger applications.

"The idea that a DNA molecule travels through the nanopore, advancing nucleotide by nucleotide, could lead to the development of a single pore DNA sequencing apparatus, an area of strong national interest," he says.

Using stochastic sensing, a new analytical technique used in nanopore work, Wendell says researchers can characterize and identify material, like DNA, moving through the membrane.

Co-first author and UC postdoctoral fellow Peng Jing, PhD, says that, compared with traditional research methods, the successful embedding of the nanomotor into the membrane may also provide researchers with a new way to study the DNA packaging mechanisms of the viral nanomotor. "Specifically, we are able to investigate the details concerning how double-stranded DNA translocates through the protein channel," he says.

The study is the next step in research on using nanomotors to package and deliver therapeutic agents directly to infected cells. Eventually, the team's work could enable use of nanoscale medical devices to diagnose and treat diseases.

"This motor is one of the strongest bio motors discovered to date," says Wendell, "If you can use that force to move a nanoscale rotor or a nanoscale machine... you're converting the force of the motor into a machine that might do something useful."

More information: www.nature.com/nnano/journal/v … /nnano.2009.259.html

Source: University of Cincinnati (news : web)

Explore further: Researchers use 'nanopore channels' to precisely detect DNA

Related Stories

Researchers use 'nanopore channels' to precisely detect DNA

April 5, 2007

Researchers at Purdue's Birck Nanotechnology Center have shown how "nanopore channels" can be used to rapidly and precisely detect specific sequences of DNA as a potential tool for genomic applications in medicine, environmental ...

E. coli discovery could lead to new antibacterial target

July 29, 2008

Northeastern University scientists have discovered a new and unique DNA binding property of a protein in E. coli. Penny J. Beuning, Assistant Professor in the Department of Chemistry and Chemical Biology, spent the last two ...

Molecular espionage shows a single HIV enzyme's many tasks

May 7, 2008

Using ingenious molecular espionage, scientists have found how a single key enzyme, seemingly the Swiss army knife in HIV's toolbox, differentiates and dynamically binds both DNA and RNA as part of the virus' fierce attack ...

Recommended for you

The microscopic origin of efficiency droop in LEDs

November 21, 2017

Light-emitting diodes—or LEDs, as they are commonly known—have been slowly replacing incandescent light bulbs in applications ranging from car taillights to indicators on electronics since their invention in the 1960s.

Borophene shines alone as 2-D plasmonic material

November 20, 2017

An atom-thick film of boron could be the first pure two-dimensional material able to emit visible and near-infrared light by activating its plasmons, according to Rice University scientists.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.