Pinhead-size worms + robot = new antibiotics

August 5, 2009
This pinhead-sized worm could play an important role in discovering and testing new antibiotics, researchers say. Credit: Wikimedia Commons

In an advance that could help ease the antibiotic drought, scientists in Massachusetts are describing successful use of a test that enlists pinhead-sized worms in efforts to discover badly needed new antibiotics. Their study appeared in ACS Chemical Biology, a monthly journal.

Frederick Ausubel and colleagues note in the new study that existing methods for identifying germ-fighting drugs involve adding the potential drug to cultures of bacteria or cells and watching the results. These tests sometimes do not work well. They may give passing grades to potential drugs that are toxic, or that fight bacteria in the same ways as existing antibiotics that are loosing effectiveness against drug-resistant bacteria.

A much better test would involve screening of potential new antibiotics in living animals infected with bacteria to see the effects on the entire body of the animal.

The scientists describe successful use of such a whole-animal high throughput screening test — automated with a robot — to test the effects of 37,000 potential drugs on C. elegans (a type of worm) infected with E. faecalis (a type of ). That bacterium causes life-threatening infections in humans. C. elegans are tiny nematode worms that are widely used in scientific research. The tests identified 28 potential new drugs never before reported to have germ-fighting effects. Some of the potential new drugs worked in ways that appeared to be totally different than existing .

More information: "High-Throughput Screen for Novel Antimicrobials using a Whole Animal Infection Model" ACS

Source: American Chemical Society (news : web)

Explore further: Toward improved antibiotics using proteins from marine diatoms

Related Stories

Marijuana ingredients show promise in battling superbugs

September 8, 2008

Substances in marijuana show promise for fighting deadly drug-resistant bacterial infections, including so-called "superbugs," without causing the drug's mood-altering effects, scientists in Italy and the United Kingdom are ...

Nanotechnology used to probe effectiveness of antibiotics

February 4, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

The structure of resistance

February 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

Pulling iron out of waste printer toner

November 15, 2017

Someday, left-over toner in discarded printer cartridges could have a second life as bridge or building components instead of as trash, wasting away in landfills and potentially harming the environment. One group reports ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.