Heat Shield Readied for Next Mars Rover

July 10, 2009,
The finished heat shield for NASA's Mars Science Laboratory is the largest ever built for descending through the atmosphere of any planet. Image credit: NASA/JPL-Caltech/Lockheed Martin

Lockheed Martin Space Systems, Denver, has finished building and testing the heat shield for protecting the Curiosity rover of NASA's Mars Science Laboratory project. This heat shield is even larger than the ones used for protecting Apollo astronauts as they returned to Earth.

Lockheed Martin has completed production and testing of the heatshield for ’s Mars Science Laboratory (MSL). The heatshield is half of the large and sophisticated two-part aeroshell that will encapsulate and protect the Curiosity rover during its deep space cruise to Mars, and from the intense heat and friction that will be generated as the system descends through the .

In October 2008, Lockheed Martin delivered the other half of the aeroshell, the backshell, to NASA’s Jet Propulsion Laboratory in Pasadena, Calif. where it is being integrated with other flight systems. The heatshield will be stored at Lockheed Martin facilities near Denver, Colo. until early 2011 when it will be shipped to Kennedy Space Center.

The aeroshell/heatshield is the largest ever built to be flown at 4.5 meters (nearly 15 feet) in diameter. In contrast, the aeroshells/heatshields of the Spirit and Opportunity Mars Exploration Rovers measured 8.5 feet and Apollo capsule heatshields measured just less than 13 feet.

Because of the unique entry trajectory profile that could create external temperatures up to 3,800 degrees Fahrenheit, the heatshield uses a tiled Phenolic Impregnated Carbon Ablator (PICA) thermal protection system instead of the Mars heritage Super Lightweight Ablator (SLA) 561V. This will be the first time PICA has flown on a Mars mission. Invented by NASA Ames Research Center, PICA was first flown as the thermal protection system on the heatshield of the Stardust Sample Return Capsule that is now in the Smithsonian Air and Space Museum.

“The Mars Science Laboratory aeroshell is the most complex capsule to fly to Mars,” said Rich Hund, MSL program manager at Lockheed Martin Space Systems Company. “The design had to address the large size and weight of the rover, the largest ever sent to Mars, and the requirement for landing at a more-precise point on Mars.”

The aeroshell has a steering capability that is produced by ejecting ballast that off-sets the center-of-mass prior to entry into the atmosphere. This off-set creates lift as it interacts with the thin Martian atmosphere and allows roll control and autonomous steering through the use of thrusters.

Prior to shipping to Kennedy Space Center, engineers will install the MSL Entry Descent and Landing Instrumentation (MEDLI) suite on the heatshield. Developed by NASA Langley Research Center, the MEDLI instrumentation will measure heatshield temperatures and atmospheric pressures as the aeroshell descends through the Martian atmosphere.

Scheduled for launch in the fall of 2011, the Curiosity rover - built by the Jet Propulsion Laboratory - will support the Mars Exploration Program’s strategy of “follow the water” and will have the science goals of determining whether the planet was ever habitable, characterizing the climate and geology of , and preparing for human exploration.

Source: JPL/NASA (news : web)

Explore further: NASA awards Mars Science Lab contract

Related Stories

Phoenix Images Discarded Heat Shield

September 18, 2008

(PhysOrg.com) -- A new color high-resolution image from the Phoenix Mars Lander shows its crumpled heat shield about 150 meters away from the spacecraft.

Recommended for you

Floodplain forests under threat

March 19, 2019

A team from the Institute of Forest Sciences at the University of Freiburg shows that the extraction of ground water for industry and households is increasingly damaging floodplain forests in Europe given the increasing intensity ...

Scientists discover common blueprint for protein antibiotics

March 19, 2019

A discovery by researchers at the Los Angeles Biomedical Research Institute (LA BioMed) has uncovered a common blueprint for proteins that have antimicrobial properties. This finding opens the door to design and development ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.