Unique sky survey brings new objects into focus

June 15, 2009
This is the Andromeda galaxy, as seen with the new PTF camera on the Samuel Oschin Telescope at Palomar Observatory. This image covers 3 square degrees of sky, more than 15 times the size of the full moon. Credit: Nugent & Poznanski (LBNL), PTF collaboration

An innovative sky survey has begun returning images that will be used to detect unprecedented numbers of powerful cosmic explosions-called supernovae-in distant galaxies, and variable brightness stars in our own Milky Way. The survey also may soon reveal new classes of astronomical objects.

All of these discoveries will stem from the Palomar Transient Factory (PTF) survey, which combines, in a new way, the power of a wide-field telescope, a high-resolution camera, and high-performance networking and computing, with rapid follow-up by telescopes around the globe, to open windows of discovery for astronomers. The survey has already found 40 supernovae and is gearing up to switch to a robotic mode of operation that will allow objects to be discovered nightly without the need for human intervention.

The Palomar Transient Factory is a collaboration of scientists and engineers from institutions around the world, including the California Institute of Technology (Caltech); the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (LBNL); Columbia University; Las Cumbres Observatory; the Weizmann Institute of Science in Israel; and Oxford University.

During the PTF process, the automated wide-angle 48-inch Samuel Oschin Telescope at Caltech's Palomar Observatory scans the skies using a 100-megapixel camera.

The flood of images, more than 100 gigabytes every night, is then beamed off of the mountain via the High Performance Wireless Research and Education Network¬-a high-speed microwave data connection to the Internet-and then to the LBNL's National Energy Scientific Computing Center. There, computers analyze the data and compare it to images previously obtained at Palomar. More computers using a type of artificial intelligence software sift through the results to identify the most interesting "transient" sources-those that vary in brightness or position.

Within minutes of a candidate transient's discovery, the system sends its coordinates and instructions for follow-up observations using the Palomar 60-inch telescope and other instruments.

Soon all of the steps in the process will be completely automated, including decisions about which transients merit a second look. When follow-up observations indicate that candidate transient detections show promise, a prioritized list of candidates is brought to the attention of astronomers from the PTF member institutions. Finally, an astronomer becomes personally involved, by performing detailed observations using telescopes such as Palomar's 200-inch Hale Telescope, a Keck Telescope in Hawaii, or other partner telescopes around the world.

The PTF is designed to search for a wide variety of transient sources with characteristic timescales ranging from minutes to months, giving astronomers one of their deepest and most comprehensive explorations of the universe in the time domain.

"By looking at the sky in a new way, we are ushering in a new era of astronomical discovery," says PTF principal investigator Shrinivas Kulkarni, MacArthur Professor of Astronomy and Planetary Science at Caltech and director of the Caltech Optical Observatories. "Nimble automated telescopes and impressive computing power make this possible."

"No one has looked on these timescales with this sensitivity before. It's entirely possible that we will find new astronomical objects never before seen by humans," says Nicholas Law of Caltech, the project scientist for PTF.

Because it looks for anything changing in the sky, the PTF survey covers a vast variety of different astronomical targets. The wide range of the survey extends across the entire universe. Astronomers expect to discover everything from stars exploding millions of light-years away to near-Earth asteroids that could someday impact our planet.

Much of the survey's time is spent searching for so-called Type Ia supernovae. These supernovae, formed from the explosion of a class of dead star known as a white dwarf, are very useful to astronomers because they can help determine the distance to galaxies located across the universe. Those distances allow astronomers to probe the origin, structure, and even the ultimate fate of the universe.

By operating more rapidly than previous surveys, PTF will also detect objects of a completely different nature, such as pulsating stars, different types of stellar explosions, and possibly planets around other stars.

PTF's innovative survey techniques also have raised astronomers' expectations of finding new, unexpected, astronomical objects.

The PTF already has found many new cosmic explosions, including 32 Type Ia supernovae, eight Type II supernovae, and four cataclysmic variable stars. Intriguingly, PTF also has found several objects with characteristics that do not exactly match any other objects that have been seen before. PTF astronomers are eagerly watching these objects to see how they change, and to determine what they might be.

The quantity and quality of incoming data have astonished astronomers working in the field. On one recent night, PTF patrolled a section of the sky about five times the size of the Big Dipper-and found 11 new objects. "Today I found five new supernovae before breakfast," says Caltech's Robert Quimby, a postdoctoral scholar and leader of the PTF software team. "In the previous survey I worked on, I found 30 in two years."

Source: California Institute of Technology (news : web)

Explore further: Astronomers eager to add to Sky in Google Earth

Related Stories

Astronomers eager to add to Sky in Google Earth

September 7, 2007

Since Sky in Google Earth debuted two weeks ago to let the public explore the heavens from their computers, two University of California, Berkeley, astronomers have jumped in to populate Google's sky with the most recently ...

Not a Quirk But a Quark ... a Quark Star!

June 27, 2008

Astronomers recently announced that they have found a novel explanation for a rare type of super-luminous stellar explosion that may have produced a new type of object known as a quark star.

Star Light, Star Bright, Its Explanation is Out of Sight

January 6, 2009

(PhysOrg.com) -- A mysterious flash of light from somewhere near or far in the universe is still keeping astronomers in the dark long after it was first detected by NASA's Hubble Space Telescope in 2006. It might represent ...

Sloan 2 Will Map The Universe, The Milky Way And Dark Energy

July 12, 2005

Dr. Richard Kron, director of the Sloan Digital Sky Survey, announced a new undertaking that will complete the largest survey of the universe. This survey will add new partners and undertake new research missions, and will ...

Recommended for you

Mars rover Opportunity on walkabout near rim

June 23, 2017

NASA's senior Mars rover, Opportunity, is examining rocks at the edge of Endeavour Crater for signs that they may have been either transported by a flood or eroded in place by wind.

CHESS mission will check out the space between stars

June 23, 2017

Deep in space between distant stars, space is not empty. Instead, there drifts vast clouds of neutral atoms and molecules, as well as charged plasma particles called the interstellar medium—that may, over millions of years, ...

Dutch astronomers discover recipe to make cosmic glycerol

June 23, 2017

A team of laboratory astrophysicists from Leiden University (the Netherlands) managed to make glycerol under conditions comparable to those in dark interstellar clouds. They allowed carbon monoxide ice to react with hydrogen ...

Scientists uncover origins of the Sun's swirling spicules

June 22, 2017

At any given moment, as many as 10 million wild jets of solar material burst from the sun's surface. They erupt as fast as 60 miles per second, and can reach lengths of 6,000 miles before collapsing. These are spicules, and ...


Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (1) Jun 16, 2009
Wow!!Maybe scientist's will me lucky to find a planet where life exist's, although their main goal is to discover bright stars in the Milky Way, reveal new astronomical classes, and detect powerfull cosmic expolosions.
not rated yet Jun 17, 2009
This is awesome that large amounts of imaging data from the 48" Schmidt (about 100Gb/night) will be able to be searched and analyized using supercomputers at LBNL in near real time. Objects of interest can be imaged multiple times to construct light curves, or if daylight or moonlight interferes, pass off the positional data to other observatories able to continue obtaining observations. Interesting use of supercomputers, high-speed internet connections and large, state of the art CCD detectors to scour the heavens. I found all sorts of great info and links on the current configuration and PTF program at the Samuel Oschin Telescope here: http://www.astro....sot.html . It's also interesting to remember this is the 48 inch Schmidt Camera that produced the Northern Hemisphere version of the popular Palomar Observatory Sky Survey I (POSS I) and the Digital POSS II (DPOSS II) that amateurs and pros use every day. History of these surveys and links to them are also available at the above link. Great to see a groundbreaking telescope still producing state-of-the-art science!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.