Switching off protein 'thermostat' shuts down deadly fungal disease

March 26, 2009 By Paul Cantin,

(PhysOrg.com) -- University of Toronto researchers have discovered that by switching off a protein "thermostat" that controls the growth and spread of lethal fungal infections, the disease may be halted.

Professor Leah Cowen and her team in the Department of Molecular Genetics discovered that a specific protein known as heat shock protein 90, or Hsp90, works as a temperature sensitive trigger for development of the potentially life-threatening fungus Candida albicans. By neutralizing Hsp90's function as a thermostat to jumpstart spread of the disease, C. albicans can be stopped in its tracks.

The research was published March 26 in the journal .

Candida albicans can cause a wide range of disease from superficial infections such as yeast infections to life-threatening infections in the bloodstream. They can be especially lethal for people with compromised immune systems, such as those with AIDS or people undergoing treatment for cancer or organ transplantation, and they are the fourth leading cause of hospital acquired infectious diseases.

"We discovered that Hsp90 is the key temperature sensor governing the development of C. albicans. Using mouse models, we further found that by genetically inhibiting Hsp90, the result was complete clearance of the disease," said Cowen, Canada Research Chair in and infectious disease.

Cowen has spent many years focusing on Hsp90's role in enabling the evolution of fungal drug resistance and developing strategies to harness Hsp90 as a tool to block the emergence of drug resistance and render resistant pathogens more responsive to treatment. Working with Rebecca Shapiro, a graduate student in her new lab at U of T, Cowen became fascinated by the longstanding mystery in the field as to why elevated temperature was required for environmental conditions such as serum to induce filamentous growth in C. albicans.

Their discovery that Hsp90 provides a new mechanism to sense changes in temperature stimulated a fruitful collaboration with researchers at Duke University. Cowen's lab collaborated with Joseph Heitman's team at Duke to dissect the molecular mechanisms through which Hsp90 regulates this developmental transition. Together they screened hundreds of C. albicans mutants to uncover the identity of the proteins through which the Hsp90 thermostat works to regulate development. Cowen also teamed up with labs headed by Duke University's Aimee Zass and John Perfect to perform studies that established that inhibiting Hsp90 may provide a powerful therapeutic strategy for life-threatening .

Provided by University of Toronto (news : web)

Explore further: The Hsp90-Antifungal Combo, please: Compromising fungi in the immunocompromised

Related Stories

Researchers hone in on new strategy to treat common infection

October 27, 2008

Researchers at Georgetown University Medical Center (GUMC) have successfully tested a genetic strategy designed to improve treatment of human infections caused by the yeast Candida albicans, ranging from diaper rash, vaginitis, ...

Sidestepping cancer's chaperone

October 18, 2007

Cancerous tumors are wildly unfavorable environments. Struggling for oxygen and nutrients while being bombarded by the body’s defense systems, tumor cells in fact require sophisticated adaptations to survive and grow. For ...

HSP90: New point of view on melanoma of the eye

February 19, 2008

Ocular melanoma is rarely detected before it has grown large enough to impair vision or to metastasize. This makes it a particularly challenging disease to fight, especially since chemotherapy is not very effective.

Recommended for you

Researchers come face to face with huge great white shark

January 18, 2019

Two shark researchers who came face to face with what could be one of the largest great whites ever recorded are using their encounter as an opportunity to push for legislation that would protect sharks in Hawaii.

Why do Hydra end up with just a single head?

January 18, 2019

Often considered immortal, the freshwater Hydra can regenerate any part of its body, a trait discovered by the Geneva naturalist Abraham Trembley nearly 300 years ago. Any fragment of its body containing a few thousands cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.