Self-digestion as a means of survival

February 27, 2009

In times of starvation, cells tighten their belts: they start to digest their own proteins and cellular organs. The process - known as autophagy - takes place in special organelles called autophagosomes. It is a strategy that simple yeast cells have developed as a means of survival when times get tough, and in the course of evolution, it has become a kind of self-cleaning process. In mammalian cells, autophagosomes are also responsible for getting rid of misfolded proteins, damaged organelles or disease-causing bacteria.

If this process malfunctions, it can result in infectious diseases, as well as cancer, Parkinson's or Alzheimer's disease. Biochemists at Frankfurt's Goethe University, working together with scientists from the University of Tromsø in Norway, the Weizmann Institute in Israel and the Tokyo Metropolitan Institute in Japan have just come up with an explanation as to how autophagosomes know exactly which proteins and organelles they should degrade.

"Although autophagy has been known for more than 30 years, it is astonishing that no-one thought of looking for the receptors that make this process so selective" explains Prof. Ivan Dikic from the Institute of Biochemistry II and the Cluster of Excellence 'Macromolecular Complexes' in Frankfurt. He had a head start in this field, since over several years, he and his group have researched and now published their work on another self-cleaning process in the cell: the degradation of small proteins in the proteasome, which acts as a kind of molecular shredder.

"We know that the molecules which are destined to be discarded are marked with the small protein ubiquitin and this is recognised by a receptor located at the gateway to the proteasome. It was natural to suggest a similar recognition mechanism for protein degradation by autophagosomes", says Dikic.

Unlike the proteasome, which is a complex molecular machine, autophagosomes simply consist of a double membrane that floats around in the cytoplasm. Not unlike white blood cells, they can engulf larger proteins or even whole cell organelles. But since they have no enzymes with which they can digest their own cargo, they fuse with lysosomes. When a Yoshinori Ohsumi's group in Japan reported that they had discovered ubiquitin-like proteins (ATG8) on the outer surface of the autophagosome and gone on to prove that they were specific for autophagy, Dikic and his colleague Dr. Vladimir Kirkin immediately began their search for potential autophagy receptors that might bind to the family of ATG8 proteins.

The team of international scientists report in the current issue of the renowned journal "Molecular Cell", that by employing methods from cell biology, biochemistry and mouse genetics, they have been able to identify a further protein, in addition to the known p62/SQSTM1 protein, that may act as a receptor. This is the protein NBR1, which has long been associated with cancer. Both proteins have a similar chain-like structure. At one end they bind to the ubiquitin that marks the protein aggregates and organelles that are to be degraded. Next to the ubiquitin-binding site is a domain that binds to the ATG8 proteins found at the autophagosomal membrane. Here, the protein waste can dock onto the autophagosome and can then be wrapped up in the membrane.

Vladimir Kirkin, who is now at Merck Serono in Darmstadt, is continuing these investigations with the long-term aim of developing new drugs. Dikic and his group are now concentrating on mitochondria - which are implicated in oxidative stress in cells - hoping to locate the receptors for autophagy on these important organelles.

More information: www.cell.com/molecular-cell/ab … 1097-2765(09)00064-1

Source: Goethe University Frankfurt

Explore further: Scientists unlock structure of mTOR, a key cancer cell signaling protein

Related Stories

Researchers reveal jamming in cellular motor protein traffic

November 17, 2017

To keep a cell alive, molecular motor proteins constantly transport building blocks and waste across the cell, along its biopolymer network. Because of the high density of these proteins, jamming effects are believed to affect ...

Uncovering the design principles of cellular compartments

December 6, 2017

Membraneless organelles are tiny droplets inside a single cell, thought to regulate everything from division, to movement, to its very destruction. A better understanding of these mysterious structures could hold the key ...

Biologists studied cellular cannibalism in cancerous growths

November 28, 2017

Researchers from Lomonosov MSU Faculty of Biology have studied the stages of entosis, a process of cell death when one cell invades the other and is digested inside of it. Entosis could become a new method of destroying cancer ...

Polyproline protects cell monolayers from freeze damage

December 6, 2017

Nature has evolved sugars, amino acids, and special antifreeze proteins as cryoprotectants. People use organic solvents and synthetic polymers as additives to prevent cell cultures from freezing damage. Now, English scientists ...

Recommended for you

Mammal long thought extinct in Australia resurfaces

December 15, 2017

A crest-tailed mulgara, a small carnivorous marsupial known only from fossilised bone fragments and presumed extinct in NSW for more than century, has been discovered in Sturt National Park north-west of Tibooburra.

Finding a lethal parasite's vulnerabilities

December 15, 2017

An estimated 100 million people around the world are infected with Strongyloides stercoralis, a parasitic nematode, yet it's likely that many don't know it. The infection can persist for years, usually only causing mild symptoms. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.