Scientists eavesdrop on the exciting conversations within cells

February 25, 2009

Scientists have discovered the secrets of a sophisticated molecule that plays a role in many aspects of human health from fertility to blood pressure; digestion to mental health. This has opened up the potential for discovery of new drugs to treat an enormous variety of conditions.

In research supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Wellcome Trust a team from the University of Cambridge shows how a molecule - the IP3 receptor - arranges itself into clusters to help broadcast vital chemical messages around cells in the form of calcium. The work is published today (25 February) in Nature.

Team leader, Professor Colin Taylor said: "Almost everything a cell does is regulated by calcium, and we know there are many diseases in both humans and animals, such as stroke or an irregular heart beat, in which calcium regulation goes wrong. But the real puzzle is trying to understand how calcium - which is amongst the simplest of all chemicals - can manage to control lots of different things at the same time. What we have found is a crucial part of that puzzle.

"Imagine you're trying to find a dancing partner at a party. You might whisper the request to several people, or you might shout it out to everyone. Some of your handful of whispered requests might be ignored and some may have you heading for the dance floor. If you shout loud enough, everyone gets to decide whether to respond. It's rather similar with messages transmitted by calcium signals: they can evoke very different responses in cells depending on whether they are whispered or shouted."

The research published today shows that when cells are stimulated, their IP3 receptors receive instructions telling them to both gather into clusters and to open and allow calcium to pass. Furthermore, IP3 receptors behave very differently when they are alone as opposed to clustered, and these differences help determine whether the calcium signal is "whispered" or "shouted".

Professor Taylor continued: "The IP3 receptors that we work on are interesting because we've found that they can both whisper and shout. Lone IP3 receptors whisper, but when they get together they can shout - not just because their combined effort is bigger, but because the calcium they release stimulates their neighbours to release calcium as well.

"We need to understand fully how IP3 receptors work if we are to begin to think of them as future targets for drugs. The clustering that we have observed fills an important gap in this understanding and takes us a step closer to being able to design drugs for a number of important diseases where we know calcium regulation goes wrong."

Professor Janet Allen, Director of Research, BBSRC said: "There is still an awful lot we don't know about the way healthy humans work. Until we get to the bottom of how complex biological processes work, what it is about them that maintains health, and where the potential points of intervention might be when things go wrong, there will be many diseases that we will not be able to treat effectively. It is reassuring to see fundamental work going on that can deliver answers to these questions. We are delighted that Professor Taylor's group have been recognised for their achievements in this area and congratulate them on publication of their Nature paper."

More information: Nature, doi:10.1038/nature07763

Source: Biotechnology and Biological Sciences Research Council

Explore further: Mitochondrial protein in cardiac muscle cells linked to heart failure, study finds

Related Stories

Researchers rethink how 'beige' fat cells burn calories

November 13, 2017

It has been known for decades that low temperatures can trigger specialized fat cells to burn energy to produce heat, but in a new study, UC San Francisco researchers have discovered a new heat-producing pathway in fat cells ...

Treating osteoarthritis using artificial cartilage tissue

October 19, 2017

A Norwegian-Swiss research team has succeeded in growing cartilage tissue cells using algae. Moreover, the new cells can reduce joint inflammation. This news gives hope for people suffering from arthrosis, also known as osteoarthritis.

3-D atomic structure of TRPML1 ion channel published

October 13, 2017

UT Southwestern Medical Center researchers today published a 3-D atomic structure of the ion channel found in mammals that is implicated in a rare, inherited neurodegenerative disease in humans. The work marks the first ...

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

Mammal long thought extinct in Australia resurfaces

December 15, 2017

A crest-tailed mulgara, a small carnivorous marsupial known only from fossilised bone fragments and presumed extinct in NSW for more than century, has been discovered in Sturt National Park north-west of Tibooburra.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

menkaur
not rated yet Feb 26, 2009
i'd like to read a book about this stuff so much....
cell biology rules ....

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.