New research identifies faster detection of viruses

February 17, 2009

A more specific and faster detection of viruses has been identified in new research by Trinity College Dublin's Professor of Physics, Martin Hegner at Trinity College's Centre of Research on Adaptive Nanostructures and Nanodevices (CRANN) and an international team of researchers. These findings have been published online in Nature News and will be published in the international peer-reviewed journal Nature Nanotechnology in March.

Viruses can be now detected in fluids and their detection is of major importance in medical diagnostics. However, despite these recent advances, current assays are time consuming and labour intensive. Professor Hegner's research shows a more efficient and practical system in detecting the viruses by using micro-sized cantilevers to directly detect viruses binding to membrane proteins.

Micro-cantilevers, which look like springboards are .5 millimetres long and 1 micrometre thick, bend in response to different forces. By measuring changes in the frequencies at which these tiny planks vibrate, researchers have turned them into super-sensitive virus-weighing scales.

Membrane proteins are the most important target for present-day drug discovery programmes. The interactions between transmembrane protein receptors and their ligands are responsible for viral detection and central to medical research. However, measuring these interactions is challenging due to the special architecture and consistency of transmembrane proteins in liquids.

For the first time, Trinity College Dublin's Professor Martin Hegner and his team have discovered how to perform these measurements in physiological conditions using nanotechnology devices. Their work shows that nanomechanical sensors based on resonating silicon micro-cantilevers can measure such interactions rapidly in such conditions.

The researchers used the protein receptor, FhuA of Escherichia coli known to bind to the T5 virus. Professor Hegner and his colleagues coated the cantilever surfaces with a molecular layer of FhuA proteins sensitised to recognise molecules from the environment. When the array was submerged in a T5 containing fluid, the researchers detected the virus binding to FhuA by measuring shifts in the vibrational frequency of the cantilevers.

Commenting on the significance of the discovery, Professor Hegner said: "These findings could lead to more specific blood tests and also will enable portable diagnostic devices in a hospital environment for a range of testing not just viruses, but also genomic markers and marker proteins."

More information: Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors, Nature Nanotechnology, Published online: 18 January 2009 www.nature.com/news/2009/090118/full/news.2009.34.html

Source: Trinity College Dublin

Explore further: Cellular metabolism arms T cells to battle viruses and tumours

Related Stories

Inflammation stops the biological clock

May 18, 2015

Researchers at Trinity College Dublin and the University of Pennsylvania have uncovered an important link between our body clock and the immune system that will have relevance to the treatment of inflammatory and infectious ...

RNA interference found in budding yeasts

September 11, 2009

Some budding yeast species have the ability to silence genes using RNA interference (RNAi). Until now, most researchers thought that no budding yeasts possess the RNAi pathway because Saccharomyces cerevisiae, the protoypical ...

Recommended for you

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

Plant inspiration could lead to flexible electronics

June 21, 2017

Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors. Aerogels are good candidates for such applications, ...

Neuron transistor behaves like a brain neuron

June 20, 2017

(Phys.org)—Researchers have built a new type of "neuron transistor"—a transistor that behaves like a neuron in a living brain. These devices could form the building blocks of neuromorphic hardware that may offer unprecedented ...

Sugar-coated nanomaterial excels at promoting bone growth

June 19, 2017

There hasn't been a gold standard for how orthopaedic spine surgeons promote new bone growth in patients, but now Northwestern University scientists have designed a bioactive nanomaterial that is so good at stimulating bone ...

3-in-1 device offers alternative to Moore's law

June 14, 2017

In the semiconductor industry, there is currently one main strategy for improving the speed and efficiency of devices: scale down the device dimensions in order to fit more transistors onto a computer chip, in accordance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.