Success for first outdoor, large-scale algae-to-biofuel research project in Nevada

January 29, 2009
Researchers prepare to harvest algae from outdoor ponds at University of Nevada, Reno. Credit: University of Nevada, Reno

The first real-world, demonstration-scale project in Nevada for turning algae into biofuel has successfully completed the initial stage of research at the University of Nevada, Reno. The project is on track to show the process is an economical, commercially viable renewable energy source in Nevada.

University researchers have harvested their first outdoor cold-weather crop of algae as part of their collaborative algae-to-biofuels project with their industry partners Enegis, LLC and Bebout and Associates.

The project, using one of two 5,000-gallon ponds at the University's greenhouse complex on Valley Road in Reno, produced several hundred gallons of concentrated algal slurry. The research has demonstrated that, with the proper technology and species of algae, it is possible to grow algae outdoors year-round in Nevada. The pond was inoculated with a "starter" culture and then the cells grow out until they reach a plateau or stationary phase, which takes two to three weeks. The algae thrived in the outdoor pond despite nighttime temperatures that fell into the low 20s.

"We'll be analyzing the algae for starches and lipids, the components that can be used for fuel," said Professor John Cushman, Department of Biochemistry & Molecular Biology. A conservative estimate for this harvest is 30 percent lipids and five percent starches on a dry weight basis, less on a fresh weight basis." The professor oversees the venture along with fellow faculty members Jeffrey Harper and David Shintani, two graduate students Leyla Hernandez-Gomez and Mark Lemos, and research associate Rebecca Albion.

The goal is to develop a hardy variety of salt-loving algae as alternative biofuel feedstock, which produces more than half its weight in oil - as well as developing a practical process to grow, concentrate and harvest the algae. The alga variety harvested was selected and cultured by the University, and future varieties will be developed by the University.

Nevada researchers and energy producers are uniquely enabled to leverage the geothermal, high solar radiation, ample land area, and salt basins to produce algae in a scalable and economically viable manner. Use of the uncovered ponds demonstrates that algae can be grown in commercial quantities year-round, even in a temperate climate. This will preclude the need for capital-intensive bioreactors or covered ponds.

The ponds were constructed with the help of industry partners Enegis, LLC and Bebout and Associates. Cushman also received grant funding from the U.S. Department of Transportation SunGrant Initiative.

"We believe that the methodologies and technologies being developed will result in high-quality biofuel that can compete in price per gallon with both current domestic biofuel production and imported fuels," Dr. John W. Bebout, renewable energy expert from Savannah, Georgia and principal consultant and founder of Bebout and Associates, said.

There is a possibility for long-term financial benefits for the University from the development of the growing process and special algae strains.

"We have signed a sharing agreement with Enegis," Cushman said. "There are possible financial benefits, especially if we file product or process patents."

Jeffrey Eppink, president of Enegis, said, "this harvest represents the culmination of more than four years of research into developing hardy varieties of algae which produce large amounts of oil or starch as well as developing a practical process to grow, concentrate and harvest the algae."

Source: University of Nevada, Reno

Explore further: Changing habitat releasing long-stored carbon into the atmosphere

Related Stories

Microalgae have great potential as fish feed ingredient

March 28, 2017

Commercially produced microalgae could become a sustainable fish feed ingredient, a project from the National Food Institute, Technical University of Denmark, has shown. In the project concepts have been developed to grow, ...

Where the greenhouse gases go

March 22, 2017

Almost half of the carbon dioxide that humans release into the environment is taken up by the world's oceans and the terrestrial biosphere. In this manner, greenhouse gases are partially extracted from the atmosphere, which ...

Green beer highlights the science behind the brew

March 17, 2017

Working with Scottish Bioenergy, the team found that by limiting all other wavelengths, the algae – known more commonly as Spirulina – will start to mass-produce the blue pigment when exposed to long wavelength red light.

Scientists race to prevent wipeout of world's coral reefs

March 13, 2017

There were startling colors here just a year ago, a dazzling array of life beneath the waves. Now this Maldivian reef is dead, killed by the stress of rising ocean temperatures. What's left is a haunting expanse of gray, ...

Recommended for you

Physicists show ion pairs perform enhanced 'spooky action'

March 28, 2017

Adding to strong recent demonstrations that particles of light perform what Einstein called "spooky action at a distance," in which two separated objects can have a connection that exceeds everyday experience, physicists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.