Scientists unlock possible aging secret in genetically altered fruit fly

January 22, 2009

Brown University researchers have identified a cellular mechanism that could someday help fight the aging process.

The finding by Stephen Helfand and Nicola Neretti and others adds another piece to the puzzle that Helfand, a professor of biology, molecular biology, cell biology and biochemistry, first discovered in 2000. Back then, he identified a mutation in the Indy ("I'm Not Dead Yet") gene that can extend the life span of fruit flies.

Subsequent studies of the Indy flies have led to the new finding that a mechanism in those genetically altered fruit flies appears to reduce significantly the production of free radicals, a cellular byproduct that can contribute to the aging process. This intervention takes place with few or no side effects on the quality of life for the fruit fly. The discovery could lead to the development of new anti-aging treatments.

"There are very few, if any, interventions that are known to dramatically extend healthy lifespan," Helfand said. "Understanding how … the Indy mutation alters the metabolic state of the fruit fly would allow someone to come up with pharmacological interventions that could mimic it and give you the benefit of genetic manipulation without having to do genetics."

The findings are detailed in new research published Jan. 21 in the online Early Edition of the Proceedings of the National Academy of Sciences. Titled "Long-lived Indy reduced mitochondrial reactive oxygen species production and oxidative damage," the piece includes a number of collaborators. Helfand served as senior author and Neretti, assistant professor (research) in Brown's Institute for Brain and Neural Systems, served as lead author. Other researchers collaborated from the University of Chicago and the University of Connecticut Health Center.

With Helfand having established that the mutated Indy gene helped fruit flies live longer, he now wanted to explore what mechanisms lead to the longer life of the fruit fly. (Indy flies' life span increased from an average life span of about 35 days to 70 days.

The researchers decided the best way to try to understand how the Indy mutation might extend life span would be to study the differences in molecular changes between the Indy flies and normal flies throughout their entire life. By comparing the expression level of all genes in the Indy flies to that of normal flies, they made an important finding. Some of the genes involved in generating the power necessary for normal cell life were expressed at lower levels in the Indy flies.

This led to a decrease in free radicals and the damage they normally cause in the cell, but it surprisingly did not decrease the overall amount of energy in the cell. These studies provide evidence for possible interventions that can alter metabolism in a way that reduces free-radical or oxidative damage and extends life span, without some of the negative consequences normally associated with a change in metabolism.

Source: Brown University

Explore further: Dolphin brains show signs of Alzheimer's Disease

Related Stories

Protein interplay in muscle tied to life span

November 14, 2013

Fruit flies are notoriously short-lived but scientists interested in the biology of aging in all animals have begun to understand why some fruit flies live longer than others. They have documented a direct association between ...

Longevity mutation found in flies far and wide

February 5, 2014

For years, researchers have been investigating how mutations of a gene called Indy (for "I'm Not Dead Yet") affect metabolism, life span, and reproductive fitness in both mammals and fruit flies. So far mutations in Indy ...

Recommended for you

Tasmanian tiger doomed long before humans came along

December 12, 2017

The Tasmanian tiger was doomed long before humans began hunting the enigmatic marsupial, scientists said Tuesday, with DNA sequencing showing it was in poor genetic health for thousands of years before its extinction.

New silicon structure opens the gate to quantum computers

December 12, 2017

In a major step toward making a quantum computer using everyday materials, a team led by researchers at Princeton University has constructed a key piece of silicon hardware capable of controlling quantum behavior between ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.