PICO and SALVE: Understanding the subatomic world better

December 18, 2008

Two new high-resolution transmission electron microscopes, co-financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), are set to open up new opportunities for research in physics and materials science. The new research microscopes at RWTH Aachen University and the University of Ulm will enable exceptional, state-of-the-art developments in the field of electron optics in Germany and be available to a broad group of users.

"With these new microscopes, Germany has the great opportunity to stay right at the cutting edge of electron microscopy," said Burkhard Jahnen, who is responsible for projects in materials science, engineering and electron microscopy at the DFG's Head Office. Thanks to these state-of-the-art microscopes it will not only be possible to study new materials at higher resolution in the future, for example for research in the fields of energy or information and communication technology, it will also open up an entirely new field of materials science that has been impossible to study to date with existing electron-optical techniques.

The "PICO" (Advanced Picometer Resolution Project) microscope, which has been approved for the RWTH Aachen, will extend the resolution that can be achieved by electron microscopes to a hitherto unimaginable scale. It will be the first microscope in the world to be capable of detecting the position of atoms to a resolution of 50 picometers – one picometer is one hundredth of the diameter of an atom – thus doubling the performance of the current generation of electron microscopes.

This will not only make it possible to see individual atoms, but also to measure the interatomic distance and atomic motion to an accuracy of approximately one picometer. At the same time, it will be possible to investigate the nature of the atoms by spectroscopic analysis and study their chemical bonds.

The DFG is providing 2.5 million euros in funding for the PICO project, which will cost approximately 15 million euros in total, which will be matched by the state of North Rhine-Westphalia. The Federal Ministry for Education and Research (BMBF) will provide funding for additional components for the microscope and finance some of the required building work. The new microscope will be located at the Ernst Ruska Centre (ER-C) for Microscopy and Spectroscopy with Electrons, which is operated by the RWTH Aachen and the Jülich Research Centre. The ER-C is one of the leading international research centres in the field of ultra-high resolution electron microscopy.

The resolution of the SALVE (Sub-Ångstrøm Low Voltage Transmission Electron Microscopy) project's low-voltage transmission electron microscope at the University of Ulm poses a serious challenge to researchers. The main focus of this five-year project is on imaging individual atoms in materials for applications in nanotechnology that are sensitive to the energy of the electron beam that would quickly be destroyed in conventional electron microscopy. The project plans to use low acceleration voltages that have barely been used in practice in electron microscopes to date, while simultaneously applying state-of-the-art electron-optical methods.

This new microscope will make it possible to reveal molecular structures and follow molecular processes, allowing researchers to unlock the secrets of chemical reactions. The DFG is providing 4.2 million euros in funding for the project, which will cost approximately 11.5 million euros in total, while the state of Baden-Württemberg will provide 2.4 million euros and a further 3.7 million euros, including an endowed chair, will be funded by Carl Zeiss AG from Oberkochen.

Source: Deutsche Forschungsgemeinschaft

Explore further: Cryo-electron microscopy advancements bring atomic-level life into clearer view

Related Stories

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.