Researchers discover method for mass production of nanomaterial graphene

November 10, 2008
Two overlapping images of the same graphene sheet produced by hydrazine reduction; the top image was produced using atomic force microscopy, while the bottom was produced with scanning electron microscopy. This is the first reported instance of a graphene sheet being large enough for both tests to be run on the same specimen. (Image credit: Vincent Tung, Matthew Allen, Adam Stieg)

(PhysOrg.com) -- Graphene is a perfect example of the wonders of nanotechnology, in which common substances are scaled down to an atomic level to uncover new and exciting possibilities.

Graphene is created when graphite — the mother form of all graphitic carbon, which is used to make the pigment that allows pencils to write on paper — is reduced down to a one-atom-thick sheet. Graphene is among the strongest materials known and has an attractive array of benefits. These sheets — single-layer graphene — have potential as electrodes for solar cells, for use in sensors, as the anode electrode material in lithium batteries and as efficient zero-band-gap semiconductors.

Research on graphene sheets has been restricted, though, due to the difficulty of creating single-layer samples for use in experiments. But in a study published online Nov. 9 in the journal Nature Nanotechnology, researchers from UCLA's California NanoSystems Institute (CNSI) propose a method which can produce graphene sheets in large quantities.

Led by Yang Yang, a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering, and Richard Kaner, a UCLA professor of chemistry and biochemistry, the researchers developed a method of placing graphite oxide paper in a solution of pure hydrazine (a chemical compound of nitrogen and hydrogen), which reduces the graphite oxide paper into single-layer graphene.

Such methods have been studied by others, but this is the first reported instance of using hydrazine as the solvent. The graphene produced from the hydrazine solution is also a more efficient electrical conductor. Field-effect devices display output currents three orders of magnitude higher than previously reported using chemically produced graphene.
Kaner and Kang's co-authors on the research were doctoral students Vincent Tung, from Yang's lab, and Matthew Allen, from Kaner's lab.

"We have discovered a route toward solution processing of large-scale graphene sheets," Tung said. "These breakthroughs represent the future of graphene nanoelectronic research."

The coverage of the graphene sheets can be controlled by altering the concentration and composition of the hydrazine solution. This hydrazine method also preserves the integrity of the sheets, producing the largest-area graphene sheet yet reported, 20 micrometers by 40 micrometers. A micrometer is one-millionth of a meter, while a nanometer is one billionth of a meter.

"These graphene sheets are by far the largest produced, and the method allows great control over deposition," Allen said. "Chemically converted graphene can now be studied in depth through a variety of electronic tests and microscopic techniques not previously possible."

"Interdisciplinary research of this sort is a benefit of collaborative institutes like the CNSI," said Kaner, who is also an associate director of the CNSI. "Graphene is a cutting-edge nanomaterial and one which has great potential to revolutionize electronics and many other fields."

There are two methods currently used for graphene production — the drawing method and the reduction method, each with its own drawbacks. In the drawing method, layers are peeled off of graphite crystals until one is produced that is only one-atom thick. When likely graphene suspects are identified from the peeled layers, they must be extensively studied to conclusively prove their identity. In the reduction method, silicon carbide is heated to high temperatures (1100° C) to reduce it to graphene. This process produces a small sample size and is unlikely to be compatible with fabrication techniques for most electronic applications.

"This technology (hydrazine reduction) utilizes a true solution process for graphene, which can dramatically simplify preparing electronic devices," said Yang, who is also faculty director of the Nano Renewable Energy Center at the CNSI. "It thus holds great promise for future large-area, flexible electronics."

Source: University of California - Los Angeles

Explore further: A way to cause graphene to self-fold into 3-D shapes

Related Stories

A way to cause graphene to self-fold into 3-D shapes

October 9, 2017

(Phys.org)—A team of researchers with Johns Hopkins University and MIT has found a way to cause flat sheets of graphene to self-fold into 3-D geometric shapes. In their paper published on the open access site Science Advances, ...

Synthesizing pure graphene, a 'miracle material'

August 29, 2017

Formed deep within the earth, stronger than steel, and thinner than a human hair. These comparisons aren't describing a new super hero. They're describing graphene, a substance that some experts have called "the most amazing ...

Novel technique using graphene to create solar cells

July 31, 2017

Imagine a future in which solar cells are all around us—on windows and walls, cell phones, laptops, and more. A new flexible, transparent solar cell developed at MIT is bringing that future one step closer.

Large single-crystal graphene is possible

July 26, 2017

Thanks to its conductivity, strength and flexibility, graphene is considered as one of the most likely substitutes for silicon and other materials. However, it has not yet resulted in industrial applications. High-quality ...

Graphene single photon detectors

September 6, 2017

Considerable interest in new single-photon detector technologies has been scaling in this past decade. Nowadays, quantum optics and quantum information applications are, among others, one of the main precursors for the accelerated ...

Recommended for you

Chemical treatment improves quantum dot lasers

October 16, 2017

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's ...

Low-cost battery from waste graphite

October 11, 2017

Lithium ion batteries are flammable and the price of the raw material is rising. Are there alternatives? Yes: Empa and ETH Zürich researchers have discovered promising approaches as to how we might produce batteries out ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

ChemEng
not rated yet Nov 11, 2008
Using hydrazine to reduce graphene oxide has been known for quite some time. Most people however use it in a mixture with an alcohol or water due to safety issues with hydrazine.
Mercury_01
not rated yet Nov 16, 2008
hydrazine dissolved my testicles and upper respiratory tract.
NeilFarbstein
1 / 5 (1) Dec 07, 2008
Another overexaggeration! Don't call 20 micrometer pieces of graphene mass production. They are incredible. There is no way you can produce standardized electronic chips from irregularly shaped and irregularly sized flakes of graphene.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.