Microscopic structure of quantum gases made visible

October 20, 2008
Inside the high-resolution scanning electron microscope.

Scientists at the Johannes Gutenberg University Mainz, Germany, have, for the first time, succeeded in rendering the spatial distribution of individual atoms in a Bose-Einstein condensate visible.

Bose-Einstein condensates are small, ultracold gas clouds which, due to their low temperatures, can no longer be described in terms of traditional physics but must be described using the laws of quantum mechanics. The first Bose-Einstein condensates were generated in 1995 by Eric A. Cornell, Carl E. Wieman and Wolfgang Ketterle, who received the Nobel Prize in Physics for their work only six years later. Since then, these unique gas clouds, the coldest objects humans ever created, have become a global research object.

Physicists working with Dr Herwig Ott in the study group for quantum, atomic and neutron physics (QUANTUM) at Mainz University have now developed a new tech-nology that can be used to plot the individual atoms in a Bose-Einstein condensate. In addition, the spatial resolution achieved during plotting far exceeds any previous methods used. The research results of the Emmy Noether Independent Junior Research Group, sponsored by the German Research Foundation (DFG), were published in the professional journal Nature Physics under the title of "High-resolution scanning electron microscopy of an ultracold quantum gas".

This breakthrough was possible due to the use of a high-resolution scanning elec-tron microscope that makes use of a very fine electron beam to scan the ultracold atomic cloud, thus rendering even the smallest structures visible. "The transfer of this technology to ultracold gases was a technical risk," reports Dr Herwig Ott, head of the Emmy Noether Junior Research Group, "as two different techniques had to be combined."

Moreover, atoms and molecules move completely freely and ran-domly in gases unlike they do in solids. Another advantage of this highly advanced microscopy process is the better spatial resolution compared with optical processes where the resolution capacity is limited by the wavelength of the light used. "With a resolution of 150 nm, we are able to view these quantum objects with an accuracy that is 10 times higher than has been possible to date," explains Ott.

As electron microscopy made previously unknown parts of our world visible to the viewer, so the technology developed in Mainz has opened up unique possibilities for investigating the microscopic structure of quantum gases. The physicists in Mainz have already reached their first major milestone: They managed to make the structure of a so-called optical lattice visible. Optical lattices are interference patterns comprised of laser beams, which are shone onto the atomic cloud and force their periodic structure onto it. This results in the creation of crystal-like formations.

The interesting aspect is that the movement of the atoms in an optical lattice within a quantum gas is similar to the behavior of electrons in solid bodies. Quantum gases are thus able to simulate the physical properties of solid bodies and can therefore also contribute to answering outstanding questions in solid-state physics.

Link: www.nature.com/nphys/journal/v … t/abs/nphys1102.html

Source: Johannes Gutenberg University Mainz

Explore further: German physicists develop a quantum interface between light and atoms

Related Stories

Distinguishing decoherence in quantum systems

April 22, 2008

“Over the years, work on Bose-Einstein condensates, known as BEC, have led to more and more interesting phenomena,” Artur Widera tells PhysOrg.com. “This is because they behave according to quantum mechanics, and are ...

Error-free into the quantum computer age

December 15, 2017

A study led by physicists at Swansea University in Wales, carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for ...

Researchers propose a new system for quantum simulation

September 3, 2013

Researchers from the universities in Mainz, Frankfurt, Hamburg and Ulm have proposed a new platform for quantum simulation. In a theoretical paper recently published in Physical Review Letters, they show that a combined system ...

NIST's speedy ions could add zip to quantum computers

August 9, 2012

(Phys.org) -- Take that, sports cars! Physicists at the National Institute of Standards and Technology (NIST) can accelerate their beryllium ions from zero to 100 miles per hour and stop them in just a few microseconds. What's ...

Quantum computing on the move

November 7, 2017

A future quantum computer, using quantum bits, or qubits, might be able to solve problems that are not tractable for classical computers. Scientists are currently struggling to build devices with more than a few qubits, as ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.