Crossing 'a bridge to nowhere'

October 20, 2008,
The picture shows the 14 galaxies studied at the Wise Observatory. The galaxies stretch along a line from the lower-right to the top-left corner of the image. The star-forming regions are highlighted as shining reddish points. Credit: AFTAU

Despite thousands of years of research, astronomers know next to nothing about how the universe is structured. One strong and accepted theory is that large galaxies are clustered together on structures similar to giant soap bubbles, with tinier galaxies sprinkled on the surface of this "soapy" layer.

New observations from Tel Aviv University are giving new strength to this theory. A team led by Dr. Noah Brosch, Director of the Tel Aviv University-owned Wise Observatory, is the first in the world to uncover what they believe are visible traces of a "filament" of dark matter –– an entity on which galaxies meet, cluster and form. A filament can originate at the junction of two "soap bubbles," where the thin membrane is thicker.

Dr. Brosch, with his M.Sc. student Adi Zitrin and researchers from Cornell University, studied an area of the sky opposite the constellation Virgo, where 14 galaxies were forming in a line. Pundits have called the line a "Bridge to Nowhere" because it seems to start and end in unknown locations. Strangely, 13 of these galaxies were simultaneously giving birth to new stars.

"A Hair on the Beard of the Creator"

The odds of this occurrence are very rare, leading the researchers to believe that the galaxies might somehow be forming on this elusive filament, made entirely from dark matter, which attracts regular matter that then turns into new stars. "There has long been a theoretical belief that this was the case," says Dr. Brosch, "but this new finding represents experimental results that such a filament really exists, and that possibly it is an entity made from dark matter which is aligning these galaxies."

Dr. Brosch compares the work of an astronomer to "looking for hairs of the beard of the Creator."

This line of galaxies may be one such hair. Generally speaking, matter as we know it on earth makes up only a small percentage of our universe. The composition of most of the universe is unknown ― it's either dark matter (about one quarter of the universe) or dark energy (the other three-quarters). "Our studies show that you don't need to go to the edge of the universe to find dark matter. It may be only 15 million light years away, more or less in our backyard," says Dr. Brosch.

The research has massive implications for astronomy and the understanding of galaxy-formation. And due to the surprising closeness of this new grouping of galaxies to ours, it would only be a matter of technological advances ― maybe a couple of hundred years ― and a longer human lifespan before explorers could visit this unusual dark matter in person. "Our technology is abysmally limited right now, but it could definitely happen," says Dr. Brosch.

Source: American Friends of Tel Aviv University

Explore further: After mapping millions of galaxies, dark energy survey finishes data collection

Related Stories

The Milky Way is warped

February 4, 2019

The Milky Way galaxy's disk of stars is anything but stable and flat. Instead, it becomes increasingly warped and twisted far away from the Milky Way's center, according to astronomers from National Astronomical Observatories ...

It looks like dark matter can be heated up and moved around

January 11, 2019

Look at a galaxy, what do you see? Probably lots of stars. Nebulae too. And that's probably it. A whole bunch of stars and gas in a variety of colorful assortments; a delight to the eye. And buried among those stars, if you ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

TimESimmons
1 / 5 (3) Oct 20, 2008
That'll be the anti-gravity matter.

http://www.presto...ndex.htm
yyz
5 / 5 (2) Oct 20, 2008
I think that massive amount of redshift data could be amassed in the next several years with the likes of PanSTARRS 4 & the LSST, with greatly increased precision. This data would allow astronomers 3-D maps of the universe far enough to quantify the validity of galaxy structures such as filaments of DM linking visible matter (galaxies) in a soap-bubble like configuration. Several extensive ground-based observations have supported the existence of galaxy filaments between galaxy clusters and general field galaxies. Confirming these studies may greatly increase our knowledge of DM & DE, along with observations of phenomenon closer to our galaxy itself.
yyz
5 / 5 (1) Oct 20, 2008
That'll be the anti-gravity matter. Please, not this again. It's like "Mars will appear as large as the full moon" stories all over again. Nice looking web page, though.
Alizee
Oct 29, 2008
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.