A broadband single-photon source

September 19, 2008 By Miranda Marquit, Phys.org feature
Photonic crystal membrane waveguide with an emitting quantum dot (red dot) in side-view (upper image) and top-view (lower image). An excited quantum dot emits one photon at a time, which is directed into the waveguide with very high efficiency. Image: Peter Lodahl

As science makes progress toward practical quantum computing, improved quantum cryptography and scalable quantum communications systems, single photon sources will become more important. Until now, though, efficient solid-state single photon sources are hard to come by. “The standard procedure,” Peter Lodahl tells PhysOrg.com, “has been to put a quantum dot in a photonic crystal cavity.”

Lodahl, a physicist at DTU Fotonik, Technical University of Denmark in Lyngby, explains that the conventional cavity setup does produce single photons. However, the drawback is the narrow bandwidth that accompanies such cavities. “The cavity linewidth is very narrow, and this significantly limits the applicability of the device since very precise positioning and tuning of the quantum dot relative to the cavity is required,” he says. “Furthermore, the photon subsequently needs to be coupled out of the cavity to be useful for quantum communication purposes.”

Lodahl and his team at the Technical University of Denmark have taken a step toward a broad bandwidth, high-efficiency, single photon source for quantum communications purposes. The group also includes scientists from Würzburg University in Germany. The team has coupled a quantum dot to a photonic crystal waveguide, rather than relying on cavities. The results of their experiment can be found in Physical Review Letters: “Experimental Realization of Highly Efficient Broadband Coupling of Single Quantum Dots to a Photonic Crystal Waveguide,” by Toke Lund-Hansen et al.

“The quantum dots are embedded in a photonic crystal waveguide,” Lodahl explains. “A quantum dot is excited and emits a single photon, which is coupled into the waveguide with high efficiency. Then we get one single photon from the quantum dot propagating in the single mode of the waveguide.” Re-exciting the quantum dot, he says, allows for the single photon source to produce one photon after the other.

Lodahl says that the broadband effect is a unique property of photonic crystal waveguides. “We can engineer it, for example, by controlling the distance between the holes that the photonic crystal is made of.” He also points out that the resulting scattering of the light on the holes means that light propagating in the waveguide is slowed down. “Slow light propagation is a key to getting the strong coupling between the quantum dots and the photonic crystal waveguide.”

A single photon source is thought to have a variety of applications in terms of practical quantum applications. Lodahl’s team is particularly interested in creating on-chip single photon sources. This would make them more usable in the realm of solid-state quantum information processing or quantum computing.

While advancing solid-state quantum information is interesting to Lodahl, he cautions that this is a just a first step. There is still a way to go before the process can be put into practice. “This is just the first experiment,” he says, “the first demonstration that this setup is possible, and that single photons can be extracted efficiently this way.” He points out that there is still much to learn and explore. “We want to study the properties of the photons emitted from the waveguide, especially their coherence.” Lodahl also believes that through further experiments it should be possible to improve upon the design. “This new, efficient single photon source could be improved further, making it very promising for quantum information and quantum computing applications.”

For more on this project, visit www.fotonik.dtu.dk/quantumphotonics .

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: New form of light: Newly observed optical state could enable quantum computing with photons

Related Stories

New hole-punched crystal clears a path for quantum light

February 13, 2018

Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the ...

Quantum race accelerates development of silicon quantum chip

January 25, 2018

A team of TU Delft scientists led by Professor Vandersypen seeks to create better and more reliable quantum processors. In a neck-and-neck race with competitors, they showed that quantum information of an electron spin can ...

Light controls two-atom quantum computation

February 7, 2018

Some powerful rulers of the world may dream of the possibility to get in touch with their colleagues on different continents unnoticed by friends or foes. Someday, new quantum technologies could allow for making these wishes ...

Recommended for you

Converting heat into electricity with pencil and paper

February 19, 2018

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive ...

Bringing a hidden superconducting state to light

February 16, 2018

A team of scientists has detected a hidden state of electronic order in a layered material containing lanthanum, barium, copper, and oxygen (LBCO). When cooled to a certain temperature and with certain concentrations of barium, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.