Spectrograph Team Awaits October Hubble Servicing Mission

August 22, 2008

A $70 million instrument designed by the University of Colorado at Boulder that will be inserted on the Hubble Space Telescope during an October 2008 servicing mission should help astronomers better understand how galaxies, stars and planets evolved.

Known as the Cosmic Origins Spectrograph, the telephone booth-sized instrument is expected to help scientists untangle the mysteries of the "cosmic web" of material permeating the universe, said CU-Boulder Professor James Green, COS science team leader. Built primarily by Ball Aerospace & Technologies Corp. of Boulder, COS will gather information from ultraviolet light emanating from distant objects, allowing scientists to look back in time and space and reconstruct the physical condition and evolution of the early universe, said Green.

The COS team will use distant quasars as "flashlights" to track light as it passes through the cosmic web, believed to be made up of long, narrow filaments of galaxies and intergalactic gas separated by enormous voids, said Green. Light absorbed by material in the web should reveal "fingerprints" of matter like hydrogen, helium and heavier elements, allowing scientists to build up a picture of how the gases are distributed and how matter has changed over time as the universe has aged, he said.

"Our main science goal is to understand the large-scale structure of the universe," said Green. "This instrument can help us understand the composition of this cosmic web, including how galaxies like our own Milky Way formed and evolved over time."

The spectrograph will break light into its individual components -- similar to the way raindrops break sunlight into the colors of the rainbow -- revealing information about the temperature, density, velocity, distance and chemical composition of galaxies, stars and gas clouds. The COS instrument will peer back in time to 10 billion years ago when the first galaxies and chemical elements were forming, Green said.

COS will improve Hubble's ability to detect UV light in the universe by a factor of 10 over the previous Hubble instruments, said CU-Boulder Professor Michael Shull of CASA, a COS science team member. "There are hundreds or thousands of new targets in our sights that are just too faint to image with Hubble's other instruments," Shull said.

COS also will be used to detect young hot stars shrouded in the thick dust clouds they formed in, providing new information on star birth, said Shull. Scientists also will point COS at gas surrounding the outer planets of the solar system to glean new clues about planetary evolution, Shull said.

Although COS was completed in 2004, the servicing mission was put on hold and later canceled as a result of the 2003 Columbia space shuttle disaster before being resurrected in October 2006 by NASA. "I never completely lost faith that it would fly," said Green. "The opportunity to do great science was very clear to everyone in the astronomical community."

CU-Boulder researchers have a long heritage with the Hubble Space Telescope, said Green. CU-Boulder Professor Jack Brandt, now retired, was the science team leader for the high-resolution spectrograph on the orbiting telescope when it launched with worldwide fanfare in 1990. Dozens of other CU-Boulder astronomers also have participated in hundreds of observations using Hubble over the years.

Green and his COS science team, which is made up of 14 CU-Boulder scientists and engineers and 10 scientists from other institutions, have been allotted 552 orbits of observing time on Hubble. CU-Boulder's CASA is in the process of hiring several dozen postdoctoral researchers, graduate students and undergraduates to work on the project in the coming years, Green said.

The team will use "sight lines" between Hubble and quasars -- highly energetic objects thought to surround "supermassive" black holes -- to sample the light from the galaxies lying in between in order to better understand their evolution. By measuring abundances of the heavy elements in galaxies -- which likely formed during supernova explosions -- scientists can deduce the ages of such galaxies, Green said.

The instrument also will be used to study cold interstellar gas clouds, which contain a number of rare elements thought to have been produced by supernovae.

Other participating co-investigators on COS are from Ball Aerospace, the Southwest Research Institute in Boulder, the University of Wisconsin-Madison, the University of California, Berkeley, NASA's Goddard Space Flight Center in Greenbelt, Md., and the Space Telescope Science Institute in Baltimore, Green said.

Source: the University of Colorado

Explore further: The most mysterious star in the cosmos

Related Stories

The most mysterious star in the cosmos

October 3, 2017

Round 5 a.m. on a Tuesday this past May, Tabetha "Tabby" Boyajian sat staring at a laptop, cross-legged on her couch in the living room of her Baton Rouge, La., home. The coffee table was cluttered with the artifacts of an ...

Giant galaxy is still growing

June 25, 2015

New observations with ESO's Very Large Telescope have revealed thatthe giant elliptical galaxy Messier 87 has swallowed an entire medium-sized galaxy over the last billion years. For the first time a team of astronomers has ...

'Sideline quasars' helped to stifle early galaxy formation

March 21, 2013

University of Colorado Boulder astronomers targeting one of the brightest quasars glowing in the universe some 11 billion years ago say "sideline quasars" likely teamed up with it to heat abundant helium gas billions of years ...

Recommended for you

Major space mystery solved using data from student satellite

December 13, 2017

A 60-year-old mystery regarding the source of some energetic and potentially damaging particles in Earth's radiation belts is now solved using data from a shoebox-sized satellite built and operated by University of Colorado ...

Bright areas on Ceres suggest geologic activity

December 13, 2017

If you could fly aboard NASA's Dawn spacecraft, the surface of dwarf planet Ceres would generally look quite dark, but with notable exceptions. These exceptions are the hundreds of bright areas that stand out in images Dawn ...

Spanning disciplines in the search for life beyond Earth

December 13, 2017

The search for life beyond Earth is riding a surge of creativity and innovation. Following a gold rush of exoplanet discovery over the past two decades, it is time to tackle the next step: determining which of the known exoplanets ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

nilbud
not rated yet Aug 23, 2008
Why not build a second Hubble scope but with a properly ground lens this time. Surely there's enough work for a fleet of them.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.