Scientists uncover the key to controlling how stem cells develop

August 8, 2008

(PhysOrg.com) -- The results of a new study involving a McMaster University researcher provide insight into how scientists might control human embryonic stem cell differentiation.

In collaboration with researchers from SickKids and Mount Sinai hospitals, Dr. Jon Draper, a scientist in the McMaster Stem Cell and Cancer Research Institute, focused on producing early endoderm cells from human embryonic stem cells.

The research is published in the August issue of Cell Stem Cell, a Cell Press journal.

Human embryonic stem cells are the building blocks for every organ and tissue in the body. Aside from their ability to self renew, they are also capable of differentiating, or turning into, any type of cell in the body, including bone, muscle and blood cells.

An endoderm is the innermost of three primary layers of the human embryo. The endoderm forms certain organs in the embryo such as the respiratory and digestive tracts, the lungs, liver and pancreas.

The researchers focused on generating stable progenitor cells capable of producing all endoderm cell types. The cells were able to maintain their distinct profiles through many stages of cell culture without losing their ability to self renew.

One of the biggest barriers preventing the clinical use of human embryonic stem cells is the inability to effectively control the process of cellular differentiation. This study provides a clear picture of how the early steps of endoderm tissue differentiation might be controlled.

Dr. Cheryle Seguin and Dr. Janet Rossant, both of the Developmental and Stem Cell Biology program at SickKids, conducted the research along with Draper and Dr. Andras Nagy, of Mount Sinai Hospital.

Draper is an assistant professor in the Department of Pathology and Molecular Medicine. He joined McMaster University in February.

Provided by McMaster University

Explore further: 'Nano-in-micro' stem cell delivery could rescue blood flow after injury

Related Stories

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017

The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

Recommended for you

Genome study offers clues about history of big cats

July 21, 2017

(Phys.org)—A large international team of researchers has conducted a genetic analysis and comparison of the world's biggest cats to learn more about their history. In their paper published on the open source site Science ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.