Crop management: How small do we go?

July 8, 2008

The use of on-the-go crop and soil sensors has greatly increased the precision with which farmers can manage their crops. Recently released research in Agronomy Journal questions whether more precise management is necessarily more efficient. They discovered that the law of diminishing returns applies to precision agriculture, calculating how large of an application area is optimal for precision management techniques. According to the authors, this change could present significant cost savings for farmers.

In their article, "Spatial Analysis of Early Wheat Canopy Normalized Difference Vegetative Index: Determining Appropriate Observation Scale," E.M. Pena-Yewtukhiw, West Virginia University; G.J. Schwab and J.H. Grove, University of Kentucky; L.W. Murdock, University of Kentucky and the West Kentucky Research and Education Center; and J.T. Johnson, Clark County Cooperative Extension Center, examine how precise sensor and application grids should be for optimal efficiency.

To determine the ideal amount of data needed for precision management, the researchers calculated the optimal combination of physical sensor density (number of sensors along the applicator apparatus) and sensor output density (sensor readings per unit distance along the travel path).

The researchers found that sensor grid size can be increased from the current smallest size of .5 square meters to 5.1 square meters with no significant impact on the overall mapping of a crop's canopy or field variation. The larger grid requires fewer sensors and makes fertilizer application easier and more cost efficient. This tenfold increase in grid size could have significant cost savings for farmers using precision management techniques.

Source: American Society of Agronomy

Explore further: Smart buildings that can manage our electricity needs

Related Stories

Smart buildings that can manage our electricity needs

January 15, 2018

Researchers at EPFL have developed a system that can be installed in a building to collect data on people's energy usage. The aim is then to send this data directly to a smart electric grid that will allocate resources optimally.

Dengue takes low and slow approach to replication

January 11, 2018

A new study reveals how dengue virus manages to reproduce itself in an infected person without triggering the body's normal defenses. Duke researchers report that dengue pulls off this hoax by co-opting a specialized structure ...

Research shows drones could help crop management take off

November 17, 2017

Unmanned aerial systems (UAS), commonly referred to as drones, could help farmers determine if their crop is growing satisfactorily, according to a recent study conducted by University of Tennessee Institute of Agriculture ...

Recommended for you

Crowds within crowd found to outperform 'wisdom of the crowd'

January 18, 2018

A team of researchers affiliated with institutions in Argentina, the U.S. and Germany has found that there is a way to improve on the "wisdom of the crowd"—separate the people in a given crowd into smaller groups and let ...

Study sheds new light on ancient human-turkey relationship

January 17, 2018

For the first time, research has uncovered the origins of the earliest domestic turkeys in ancient Mexico. The study also suggests turkeys weren't only prized for their meat—with demand for the birds soaring with the Mayans ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.