Successful first test of high speed 'penetrator'

June 9, 2008

High speed ‘penetrators’ that could one day be used to breach the surface of planets have successfully passed their first test in the UK, accelerating to 700 miles per hour before striking their target. A team led by University College London (UCL) test-fired the projectiles in Wales, recording a peak of 20,000 gee upon impact (where humans can survive up to 10 gee).

Penetrators, which can carry data-collecting systems and sensors, are being developed as an alternative to manned space flight for the future exploration of moons in our solar system.

The team, led by Professor Alan Smith from UCL’s Mullard Space Science Laboratory, the University of Surrey, Birkbeck College, Imperial College, the Open University and QinetiQ ran the first three test firings of the high speed penetrators at QinetiQ’s long test track in Pendine, South Wales in May 2008. The projectiles were secured to a rocket sledge and fired along a rail track.

The penetrators, which contained a data- and sample-collecting system, a variety of sensors, accelerometers, a seismometer and a mass spectrometer (for analysis) hit a sand target at around 700 miles per hour. The electronics remained fully operational during impact, recording the deceleration in minute detail which peaked at about 20,000 gee (20,000 times the acceleration due to gravity, where humans can only survive around 10 gee).

Penetrator technology is being developed for future space exploration, to pierce the surface of planetary bodies such as our moon and the icy moons of Jupiter and Saturn. Penetrators offer a low cost approach to planetary exploration, but the enormous impact forces have meant that scientists have so far been reluctant to trust them.

Professor Smith said: "Prior to this trial, we had to rely on computer modelling and analysis. As far as we can tell the trial has been enormously successful, with all aspects of the electronics working correctly during and after the impact. I congratulate the team on this really impressive achievement – to get everything right first time is wonderful, and a tribute to British technology and innovation."

The impact trial is part of a series of technical developments and studies in preparation for future planetary space missions. These include the proposed UK MoonLITE mission to the Moon which is hoped to be launched in 2013, and possible missions to moons of the outer planets – Europa, Ganymede, Enceladous and Titan. The trials were funded by the Science and Technology Facilities Council as part of MSSL’s Rolling Grant.

Source: University of Surrey

Explore further: Researcher sketches a path toward quantum computing

Related Stories

Researcher sketches a path toward quantum computing

November 16, 2017

As new devices move quantum computing closer to practical use, the journal Nature recently asked Princeton computer scientist Margaret Martonosi and two colleagues to assess the state of software needed to exploit this powerful ...

How binge-watching a show impacts how well you remember it

November 2, 2017

If you binge-watched Stranger Things 2 this past weekend, you're far from alone. While Netflix doesn't release ratings, the show set a record as the most tweeted-about streaming show, generating 3.7 million tweets in its ...

Parker Solar Probe comes to NASA Goddard for testing

November 9, 2017

On Monday, Nov. 6, 2017, NASA's Parker Solar Probe spacecraft arrived at NASA's Goddard Space Flight Center in Greenbelt, Maryland, for environmental tests. During the spacecraft's stay at Goddard, engineers and technicians ...

Recommended for you

Recurring martian streaks: flowing sand, not water?

November 20, 2017

Dark features on Mars previously considered evidence for subsurface flowing of water are interpreted by new research as granular flows, where grains of sand and dust slip downhill to make dark streaks, rather than the ground ...

Image: Hubble's cosmic search for a missing arm

November 20, 2017

This new picture of the week, taken by the NASA/ESA Hubble Space Telescope, shows the dwarf galaxy NGC 4625, located about 30 million light-years away in the constellation of Canes Venatici (The Hunting Dogs). The image, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.