Manipulation of molecule protects intestinal cells from radiation

June 4, 2008,

A new study identifies a signaling molecule that plays a major role in radiation-induced intestinal damage. The research, published by Cell Press in the June issue of the journal Cell Stem Cell, may lead to new strategies for protecting normal tissues from radiation during cancer therapies.

Although radiation is one of the most effective treatments for cancer, damage to the cells that line the gastrointestinal tract is a major limiting factor for patients undergoing pelvic or abdominal radiotherapy. The specific mechanisms that underlie radiation-induced gastrointestinal toxicity, known as gastrointestinal (GI) syndrome, are not well understood. Previous studies have suggested that damage to intestinal stem cells and/or damage to intestinal blood vessel cells, called endothelial cells, are involved in the pathogenesis of GI syndrome.

The group led by Drs. Jian Yu and Lin Zhang from the University of Pittsburgh Cancer Institute and School of Medicine found that the protein “p53 upregulated modulator of apoptosis” (PUMA) plays a key role in the radiation-induced damage of intestinal cells. PUMA is an established player in the apoptosis pathway, a process by which cells undergo a type of programmed self-destruction.

Dr. Yu and colleagues found that mice with a deficiency of PUMA exhibited impaired apoptosis in intestinal stem and progenitor cells, and enhanced intestinal regeneration following injury. The mutant mice thus retained better intestinal integrity and survived longer following lethal doses of radiation. Although endothelial cells displayed a rapid induction of PUMA upon exposure to radiation, deletion of the protein did not alter apoptosis in these specific cells.

These results provide a mechanistic explanation of intestinal radiosensitivity and suggest that apoptosis of epithelial cells, and not endothelial cells, is the primary event that underlies the rapid onset of GI syndrome. “We were really excited to learn that deficiency in a single gene significantly protects against GI syndrome,” explains Dr. Yu. “Selectively curbing radiosensitivity in the normal tissues transiently by PUMA inhibitors might be particularly beneficial in cancer therapy.”

Source: Cell Press

Explore further: A possible way to protect intestinal walls from damage due to chemotherapy

Related Stories

Recommended for you

Archaeologists find ancient necropolis in Egypt

February 24, 2018

Egypt's Antiquities Ministry announced on Saturday the discovery of an ancient necropolis near the Nile Valley city of Minya, south of Cairo, the latest discovery in an area known to house ancient catacombs from the Pharaonic ...

AI and 5G in focus at top mobile fair

February 24, 2018

Phone makers will seek to entice new buyers with better cameras and bigger screens at the world's biggest mobile fair starting Monday in Spain after a year of flat smartphone sales.

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.