Researchers form metal nanoparticles into porous structures

June 27, 2008,
Researchers form metal nanoparticles into porous structures
Computer simulation, left, shows how platinum nanoparticles will fuse into a structure with tiny pores after the polymers that guide them into position are removed. Right, electron microscope photo of the actual structure.

For 5,000 years or so, the only way to shape metal has been to "heat and beat." Even in modern nanotechnology, working with metals involves carving with electron beams or etching with acid.

Now, Cornell researchers have developed a method to self-assemble metals into complex nanostructures. Applications include making more efficient and cheaper catalysts for fuel cells and industrial processes and creating microstructured surfaces to make new types of conductors that would carry more information across microchips than conventional wires do.

The method involves coating metal nanoparticles -- about 2 nanometers (nm) in diameter -- with an organic material known as a ligand that allows the particles to be dissolved in a liquid, then mixed with a block co-polymer (a material made up of two different chemicals whose molecules link together to solidify in a predictable pattern). When the polymer and ligand are removed, the metal particles fuse into a solid metal structure.

"The polymer community has tried to do this for 20 years," said Ulrich Wiesner, Cornell professor of materials science and engineering, who, with colleagues, reports on the new method in the June 27 issue of the journal Science. "But metals have a tendency to cluster into uncontrolled structures. The new thing we have added is the ligand, which creates high solubility in an organic solvent and allows the particles to flow even at high density."

Another key factor, he added, is to make the layer of ligand surrounding each particle relatively thin, so that the volume of metal in the final structure is large enough to hold its shape when the organic materials are removed.

"This is exciting," Wiesner said. "It opens a completely novel playground because no one has been able to structure metals in bulk ways. In principle, if you can do it with one metal you can do it with mixtures of metals."

Wiesner and two Cornell colleagues, Francis DiSalvo, the J.A. Newman Professor of Chemistry and Chemical Biology, and Sol Gruner, the John L. Wetherill Professor of Physics, as well as other researchers, report in Science how they used the new method to create a platinum structure with uniform hexagonal pores on the order of 10 nm across (a nanometer is the width of three silicon atoms). Platinum is, so far, the best available catalyst for fuel cells, and a porous structure allows fuel to flow through and react over a larger surface area.

The researchers began by mixing a solution of ligand-coated platinum nanoparticles with a block co-polymer. The solution of nanoparticles combines with just one of the two polymers. The two polymers assemble into a structure that alternates between small regions of one and the other, in this case producing clusters of metal nanoparticles suspended in one polymer and arranged around the outside of hexagonal shapes of the other polymer. Many other patterns are possible, depending on the choice of polymers.

The material is then annealed in the absence of air, turning the polymers into a carbon scaffold that continues to support the shape into which the metal particles have been formed. Wiesner and colleagues have previously used the carbon scaffold approach to create porous nanostructures of metal oxides.

The final step is to heat the material to a higher temperature in air to oxidize the ligands and burn away the carbon. Metal nanoparticles have a very low melting point at their surface, so the particles sinter together into a solid metal structure. The researchers have made fairly large chunks of porous platinum this way, up to at least a half-centimeter across.

In addition to making porous materials, the researchers said, the technique could be used to create finely structured surfaces, the key to the new field of plasmonics, in which waves of electrons move across the surface of a conductor with the information-carrying capacity of fiber optics, but in spaces small enough to fit on a chip.

Source: Cornell University

Explore further: New process could slash energy demands of fertilizer, nitrogen-based chemicals

Related Stories

Best of Last Year—The top Phys.org articles of 2017

December 19, 2017

It was another great year for science, particularly physics, as evidenced by a study conducted by U.K., Canadian and Italian researchers who revealed substantial evidence of a holographic universe. They published what is ...

New catalyst for making fuels from shale gas

January 8, 2018

Methane in shale gas can be turned into hydrocarbon fuels using an innovative platinum and copper alloy catalyst, according to new research led by UCL (University College London) and Tufts University.

Researchers develop highly sensitive gas sensors

December 27, 2017

A team from the Faculty of Physics of Lomonosov Moscow State University has suggested using porous silicon nanowire arrays in highly sensitive gas sensors. These devices will be able to detect the presence of toxic and non-toxic ...

Researchers study the surfaces of ceria nanoparticles

November 16, 2017

At Karlsruhe Institute of Technology (KIT), scientists have studied ceria nanoparticles with the help of probe molecules and a complex ultrahigh vacuum-infrared measurement system and obtained new insights into their surface ...

Recommended for you

Fast computer control for molecular machines

January 19, 2018

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Rawley
not rated yet Jun 29, 2008
Man, this isn't really new either. Perhaps the modeling is new, but really, the community has be able to do this for the past 20 years.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.