Chemists Create Cancer-Detecting Nanoparticles

June 13, 2008,

Magnetic resonance imaging (MRI) can be a doctor’s best friend for detecting a tumor in the body without resorting to surgery. MRI scans use pulses of magnetic waves and gauge the return signals to identify different types of tissue in the body, distinguishing bone from muscle, fluids from solids, and so on.

Scientists have found that magnetic nanoparticles can be especially helpful in locating cancerous cell clusters during MRI scans. Like tiny guide missiles, the nanoparticles seek out tumor cells and attach themselves to them. Once the nanoparticles bind themselves to these cancer cells, the particles operate like radio transmitters, greatly aiding the MRI’s detection capability.

Now, a team of researchers led by Shouheng Sun, Ph.D., of Brown University, and Xiaoyuan Chen, Ph.D., a member of the Stanford University Center for Cancer Nanotechnology Excellence Focused on Therapy Response, have created the smallest magnetic nanoparticles to date that can be employed on such seek-and-find missions. With a thinner coating, the particles also emit a stronger signal for the MRI to detect. Their work appears in the Journal of the American Chemical Society.

The team created iron oxide nanoparticles coated with a peptide-based targeting agent. The researchers injected the particles into mice and tested their ability to locate a brain tumor cell called U87MG. The investigators concentrated specifically on the nanoparticle’s size and the thickness of the peptide coating, which ensures that the nanoparticle attaches to the tumor cell.

Size is important because the trick is to create a nanoparticle that is small enough to navigate through the bloodstream and reach the diseased area. Bigger particles tend to stack up, creating the circulatory system’s version of a traffic jam. The investigators developed a nanoparticle that is about 8.4 nanometers in overall diameter—some six times smaller than the size of particles currently used in medicine.

The coating, while integral to the nanoparticles’ attachment to the tumor cell, also is crucial to establishing the “signal-to-noise” ratio that a MRI uses. The thinner the coating, the stronger the emitted signal and vice versa. The research team outfitted its nanoparticles with a 2-nanometer thick peptide coating—10 times thinner than the coating available in popular MRI contrast agents such as Feridex.

Another important feature of the team’s work is discovering that the RGD peptide coating binds almost seamlessly to the U87MG tumor cell. The team plans to test the particle’s ability to bind with other tumor cells in additional animal experiments.

This work, which was supported in part by the NCI’s Alliance for Nanotechnology in Cancer, is detailed in the paper “Ultrasmall c(RGDyK)-Coated Fe3O4 Nanoparticles and Their Specific Targeting to Integrin αvβ3-Rich Tumor Cells.” An abstract of this paper is available at the journal’s Web site. (pubs.acs.org/cgi-bin/abstract. … p/abs/ja802003h.html)

Source: National Cancer Institute

Explore further: Thermo-triggered release of a genome-editing machinery by modified gold nanoparticles for tumor therapy

Related Stories

Designing a golden nanopill

November 30, 2017

Imagine a microscopic gold pill that could travel to a specific location in your body and deliver a drug just where it is needed. This is the promise of plasmonic nanovesicles.

Fishing for one bad cell out of trillions of good ones

January 17, 2018

Cancer cells can break away from a tumor and circulate through the blood. There are few of the cancer cells compared to the trillions of blood cells. Current methods to find and extract these circulating tumor cells (CTC) ...

Nanoparticle-coated bacteria can deliver cancer vaccine

April 16, 2015

Marking an important step in the development of immunotherapy cancer treatment, scientists have demonstrated that nanoparticle-coated bacteria can effectively deliver an oral DNA vaccine that stimulates the body's own immune ...

Recommended for you

Researchers create first superatomic 2-D semiconductor

February 16, 2018

Atoms are the basic building blocks of all matter—at least, that is the conventional picture. In a new study, researchers have fabricated the first superatomic 2-D semiconductor, a material whose basic units aren't atoms ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

makotech222
not rated yet Jun 14, 2008
. 2 for nanotechnology :)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.