Researchers develop new ultrasensitive assay to detect most poisonous substance known

May 1, 2008

Scientists at City of Hope and the California Department of Public Health have developed a new ultrasensitive assay to detect botulinum neurotoxin. The toxin is one of the most poisonous substances known that can cause life-threatening disease, and is considered a major potential bioterrorism threat agent. The research team’s work is published today in the online journal PLoS ONE.

Botulinum neurotoxin is produced by the bacterium Clostridium botulinum. When ingested, the toxin disables nerve function and can result in paralysis and even death. Botulism normally results when a person eats food tainted with C. botulinum bacteria or if a wound is infected by the bacterium. Infants, whose digestive systems are not yet fully developed, also are susceptible to the disease if the bacterium gains a foothold in their intestinal tract.

The Centers for Disease Control and Prevention identify botulinum neurotoxin as one of six “maximum threat” bioterrorism agents due to its potency, lethality and ease of production and transport. One gram of botulinum toxin could kill more than 1 million people, according to a 2001 study in the Journal of the American Medical Association.

“The new test is at least ten thousand times more sensitive and produces results much faster than the current detection method for botulinum neurotoxin,” said Markus Kalkum, Ph.D., assistant professor, Division of Immunology, City of Hope, and lead researcher in the study. “Wide use of the new assay would improve food safety and food processing technology, speed up and improve the diagnosis and treatment of human disease, advance the development of novel therapeutics, and greatly enhance the country’s ability to detect and defend against a bioterrorism attack.”

The collaborative research team developed a test that is less expensive, faster and easier to perform than current testing options. They achieved this through the use of microscopic beads and special photochemicals that glow under ultraviolet light to achieve a heightened level of sensitivity. The microscopic beads are coated with antibodies to the botulinum neurotoxin and then mixed with the liquefied sample to be tested. The antibodies latch on to any botulinum neurotoxin molecules present in the solution and are then used to convert a special chemical into a fluorescent dye that glows in the dark when illuminated with blue or ultraviolet light. The new assay works well in liquid foods such as milk and carrot juice, and in blood serum.

The testing method has possible application in diagnosing other diseases. Researchers are investigating the potential use of antibodies for different diseases to expand the scope of the test.

Citation: Bagramyan K, Barash JR, Arnon SS, Kalkum M (2008) Attomolar Detection of Botulinum Toxin Type A in Complex Biological Matrices. PLoS ONE 3(4): e2041. doi:10.1371/journal.pone.0002041

Source: Public Library of Science

Explore further: Mini-protein rapid design method opens way to create a new class of drugs

Related Stories

Disarming the botulinum neurotoxin

February 23, 2012

Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) and the Medical School of Hannover in Germany recently discovered how the botulinum neurotoxin, a potential bioterrorism agent, survives the hostile ...

New insights into the toxin behind tetanus

June 26, 2017

Tetanus toxin is the neurotoxin that causes lockjaw. Many are vaccinated, but tetanus still kills tens of thousands of people per year worldwide. Researchers from the Department of Biochemistry and Biophysics, led by Dr. ...

Neurons from stem cells could replace mice in botulinum test

February 6, 2012

(PhysOrg.com) -- Using lab-grown human neurons, researchers from the University of Wisconsin-Madison have devised an effective assay for detecting botulinum neurotoxin, the agent widely used to cosmetically smooth the wrinkles ...

Recommended for you

How to cut your lawn for grasshoppers

November 22, 2017

Picture a grasshopper landing randomly on a lawn of fixed area. If it then jumps a certain distance in a random direction, what shape should the lawn be to maximise the chance that the grasshopper stays on the lawn after ...

New discovery: Common jellyfish is actually two species

November 21, 2017

University of Delaware professor Patrick Gaffney and alumnus Keith Bayha, a research associate with the Smithsonian's National Museum of Natural History, have determined that a common sea nettle jellyfish is actually two ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.