Self-Assembled Viruses

May 30, 2008

Viruses are true experts at importing genetic material into the cells of an infected organism. This trait is now being exploited for gene therapy, in which genes are brought into the cells of a patient to treat genetic diseases or genetic defects. Korean researchers have now made an artificial virus. As described in the journal Angewandte Chemie, they have been able to use it to transport both genes and drugs into the interior of cancer cells.

Natural viruses are extremely effective at transporting genes into cells for gene therapy; their disadvantage is that they can initiate an immune response or cause cancer. Artificial viruses do not have these side effects, but are not especially effective because their size and shape are very difficult to control—but crucial to their effectiveness. A research team headed by Myongsoo Lee has now developed a new strategy that allows the artificial viruses to maintain a defined form and size.

The researchers started with a ribbonlike protein structure (β-sheet) as their template. The protein ribbons organized themselves into a defined threadlike double layer that sets the shape and size. Coupled to the outside are “protein arms” that bind short RNA helices and embed them. If this RNA is made complementary to a specific gene sequence, it can very specifically block the reading of this gene. Known as small interfering RNAs (siRNA), these sequences represent a promising approach to gene therapy.

Glucose building blocks on the surfaces of the artificial viruses should improve binding of the artificial virus to the glucose transporters on the surfaces of the target cells. These transporters are present in nearly all mammalian cells. Tumor cells have an especially large number of these transporters.

Trials with a line of human cancer cells demonstrated that the artificial viruses very effectively transport an siRNA and block the target gene.

In addition, the researchers were able to attach hydrophobic (water repellant) molecules—for demonstration purposes a dye—to the artificial viruses. The dye was transported into the nuclei of tumor cells. This result is particularly interesting because the nucleus is the target for many important antitumor agents.

Citation: Myongsoo Lee, Filamentous Artificial Virus from a Self-Assembled Discrete Nanoribbon, Angewandte Chemie International Edition 2008, 47, No. 24, 4525–4528, doi: 10.1002/anie.200800266

Source: Wiley

Explore further: Artificial thymus can produce cancer-fighting T cells from blood stem cells

Related Stories

Mimicking evolution to treat cancer

March 3, 2017

Research led by Associate Professor David Ackerley, director of Victoria's Biotechnology programme, has underpinned the development of a new form of chemotherapy that exclusively targets cancer cells.

Testing the efficacy of new gene therapies more efficiently

March 21, 2017

Using a new cellular model, innovative gene therapy approaches for the hereditary immunodeficiency Chronic Granulomatous Disease can be tested faster and cost-effectively in the lab for their efficacy. A team of researchers ...

How manure protects against allergies

March 8, 2017

Researchers funded by the Swiss National Science Foundation (SNSF) studied laboratory mice growing up in a cowshed. This enabled them to investigate how the farm environment modifies the immune system and provides protection ...

How computers are searching for drugs of the future

April 6, 2017

Drug discovery may bring to mind images of white lab coats and pipettes, but when Henry Lin, PhD, recently set out to find a better opioid with fewer side effects, his first step was to fire up the computers.

Recommended for you

Toward mass-producible quantum computers

May 26, 2017

Quantum computers are experimental devices that offer large speedups on some computational problems. One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials.

Knowledge gap on the origin of sex

May 26, 2017

There are significant gaps in our knowledge on the evolution of sex, according to a research review on sex chromosomes from Lund University in Sweden. Even after more than a century of study, researchers do not know enough ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
4 / 5 (1) Jun 04, 2008
this stuff sound like playing with lego, perhaps soon enough it will appear to be just this easy.
makotech222
not rated yet Jun 04, 2008
i am legend, anyone? lol

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.