Chip-Based Device Measures Drug Resistance in Tumor Cells

May 21, 2008

Multiple drug resistance is a major cause of anticancer therapy failure. Most drug-resistance cancer cells develop this unfortunate characteristic due to a drug-pumping protein known as P-glycoprotein.

Now, a team of investigators at Simon Fraser University in Burnaby, British Columbia, has developed a microfluidic chip that can trap individual cancer cells and investigate the ability of various pump-blocking drugs to overcome drug resistance. This new “lab-on-a-chip” device could prove useful for studying multiple drug resistance and for selecting the appropriate therapy for a given patient.

Paul Li, Ph.D., and his colleagues developed the dime-size chip to select and retain individual cancer cells within a chamber that can be dosed with drugs loaded into an on-chip reservoir. An optical detection system, consisting of an inverted fluorescence microscope, enabled the researchers to measure drug influx and efflux in real time, before and after the cells were dosed with various pump inhibitors. In their current work, which appears in the journal Analytical Chemistry, the investigators studied the effects of the antipump drug verapamil on the net intake of the anticancer drug daunorubicin.

This work is detailed in the paper “Same-Single-Cell Analysis for the Study of Drug Efflux Modulation of Multidrug Resistant Cells Using a Microfluidic Chip.” Investigators from the BC Cancer Research Center in Vancouver also participated in this study. An abstract of this paper is available at the journal’s Web site.

Source: National Cancer Institute

Explore further: Biologists' new peptide could fight many cancers

Related Stories

Biologists' new peptide could fight many cancers

January 16, 2018

MIT biologists have designed a new peptide that can disrupt a key protein that many types of cancers, including some forms of lymphoma, leukemia, and breast cancer, need to survive.

Fishing for one bad cell out of trillions of good ones

January 17, 2018

Cancer cells can break away from a tumor and circulate through the blood. There are few of the cancer cells compared to the trillions of blood cells. Current methods to find and extract these circulating tumor cells (CTC) ...

New method to stop cells dividing could help fight cancer

January 18, 2018

Researchers at Uppsala University, Karolinska Institutet, and the University of Oxford, have used a new strategy to shut down specific enzymes to stop cells from dividing. The method, published in Cell Chemical Biology, can ...

Dulling cancer therapy's double-edged sword

January 17, 2018

Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.

Researchers find a way to 'starve' cancer

January 18, 2018

Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

New research challenges existing models of black holes

January 19, 2018

Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), has collaborated on a new study that expands the scientific community's understanding of black holes in our galaxy ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.