Time scale established for proton transfer

March 20, 2008 By Miranda Marquit, Phys.org feature

“In the past,” Masanari Nagasaka tells PhysOrg.com, “we only knew that proton transfer was a fast process. Now we are able to determine the speed of proton transfer. This is a step in understanding the mechanism of proton transfer, which is very important in many fields.”

Nagasaka is an assistant professor at the Institute for Molecular Science in Okazaki, Japan, and has belonged to the University of Tokyo, where until last year he worked as a doctoral student with Kondoh, Amemiya, Ohta and Iwasawa. Their work focuses on establishing the time scale of proton transfer between water (H2O) and hydroxyl (OH) on a platinum (Pt) surface. Their work appears in Physical Review Letters: “Proton Transfer in a Two-Dimensional Hydrogen-Bonding Network: Water and Hydroxyl on a Pt(111) Surface.”

“This is a two-dimensional bonding network,” Nagasaka explains. “It becomes a model system to study proton speed, and to give us a time scale.”

In the experiment, the team used laser-induced thermal desorption in order to prepare a specially patterned honeycomb arrangement of H2O and OH. Laser-induced thermal desorption is a method that allows for physical separation, usually from solids. A laser is used to provide heat in such a way as to prepare the special arrangement of the water and hydroxyl on the platinum surface.

At the same time, the evolution of the H2O and OH distribution was observed with the help of microscale x-ray photoelectron sprectroscopy (micro-XPS). This process is used to measure elemental composition on a tiny scale, allowing the team in Japan to record the process. After analyzing the results, a diffusion equation was used to determine that direct proton transfer had taken place.

“This is very basic science,” Nagasaka explains. “Proton transfer is very important in physics, chemistry and even biology. But we don’t have a very good understanding of how the mechanism works. This is an important result, and a first step in studying how to control different reactions.”

Nagasaka says that it has been difficult to determine reaction rates, and this can impact different experiments in a variety fields, especially those that concern surface materials. “We were able to determine the speed on the nano time scale using our new method,” he points out. “This is first result like this, and there is a possibility to apply it to other processes.” He’s not sure, but he thinks that maybe the method of combining laser-induced thermal desorption with micro-XPS could be used to help study reaction rates in fusion.

Most of Nagasaka’s work focuses on surface chemistry – the study of how different molecules and atoms react on surfaces. The field of surface chemistry has grown in recent years to encompass electronics, fuel production (including renewable fuels) and other applications, such as artificial fertilizers. Understanding proton transfer could open up new avenues of study and lead to innovation in a number of fields, as well as in various scientific disciplines.

“This is really a model system,” Nagasaka explains. “During the next five years we will do further study.”

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Hunting for rare isotopes: The mysterious radioactive atomic nuclei that will be in tomorrow's technology

Related Stories

Fully identified—the pathway of protons

November 9, 2018

In their catalytic center, hydrogenases manufacture molecular hydrogen (H2) from two protons and two electrons. They extract the protons required for this process from the surrounding water and transfer them – via a transport ...

Extremely small and fast: Laser ignites hot plasma

September 19, 2018

When light pulses from an extremely powerful laser system are fired onto material samples, the electric field of the light rips the electrons off the atomic nuclei. For fractions of a second, a plasma is created. The electrons ...

A quantum leap toward expanding the search for dark matter

September 25, 2018

Figuring out how to extend the search for dark matter particles – dark matter describes the stuff that makes up an estimated 85 percent of the total mass of the universe yet so far has only been measured by its gravitational ...

Recommended for you

Magic number colloidal clusters

December 14, 2018

Complexity in nature often results from self-assembly, and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nanoparticles ...

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
4 / 5 (1) Mar 22, 2008
>We were able to determine the speed on the nano time scale

So if I got it right they determined that the time proton transfer takes is anywhere from 1 nanosecond to 1 microsecond?

For an article about this specific measurement the result is stated in a very vague way.
guiding_light
2 / 5 (2) Mar 23, 2008
H2O is really OH plus a proton, isn't it? Maybe the proton isn't moving but the bond between OH and H is shifting in the honeycomb?
mrlewish
1 / 5 (1) Mar 25, 2008
Does this apply to all atoms and molecules? Is the rate the same? Could this be a new constant? ie. Time it takes to transfer a proton from one atom to another and under what conditions. Kind of like pi

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.