Closing the 'Pseudogap' on Superconductivity

March 13, 2008

One of the biggest mysteries in studying high-temperature (Tc) superconductors - materials that conduct electrical current with no resistance below a certain transition temperature - is the origin of a gap in the energy level of the materials' electronic spectrum. Brookhaven physicist Hongbo Yang presented his latest research on this "pseudogap" on Monday at the American Physical Society meeting.

Understanding the pseudogap may help scientists understand the mechanism for high-temperature superconductivity, which in turn could lead to the strategic design of superconductors for practical applications such as high-capacity, highly efficient power transmission lines.

There are competing theories for the origin of the pseudogap. In one, the material is considered a normal metal from which superconductivity starts to emerge via the pairing of electrons. In another, the pseudogap is thought to reflect the competition between superconductivity and another condition of the material - some other "ground state."

"Our new results indicate that the first theory is clearly incorrect, these are not normal metals that simply become superconductors," said Yang.

Yang presented his results of how the gap changes at various temperatures and with various levels of doping - that is, with different amounts of various other atoms added to the material.

"The results show that the underdoped system in the normal state behaves differently from all regions of the phase diagram in the superconducting state, and point to potentially different origins for the pseudogap," he said.

Source: Brookhaven National Laboratory

Explore further: Scientists enter unexplored territory in superconductivity search

Related Stories

Recommended for you

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.