Closing the 'Pseudogap' on Superconductivity

March 13, 2008

One of the biggest mysteries in studying high-temperature (Tc) superconductors - materials that conduct electrical current with no resistance below a certain transition temperature - is the origin of a gap in the energy level of the materials' electronic spectrum. Brookhaven physicist Hongbo Yang presented his latest research on this "pseudogap" on Monday at the American Physical Society meeting.

Understanding the pseudogap may help scientists understand the mechanism for high-temperature superconductivity, which in turn could lead to the strategic design of superconductors for practical applications such as high-capacity, highly efficient power transmission lines.

There are competing theories for the origin of the pseudogap. In one, the material is considered a normal metal from which superconductivity starts to emerge via the pairing of electrons. In another, the pseudogap is thought to reflect the competition between superconductivity and another condition of the material - some other "ground state."

"Our new results indicate that the first theory is clearly incorrect, these are not normal metals that simply become superconductors," said Yang.

Yang presented his results of how the gap changes at various temperatures and with various levels of doping - that is, with different amounts of various other atoms added to the material.

"The results show that the underdoped system in the normal state behaves differently from all regions of the phase diagram in the superconducting state, and point to potentially different origins for the pseudogap," he said.

Source: Brookhaven National Laboratory

Explore further: Experiments debunk 'pseudogap' role in superconductivity, pave way to practical superconductors

Related Stories

Physicists reveal superconducting surprise

February 12, 2008

MIT physicists have taken a step toward understanding the puzzling nature of high-temperature superconductors, materials that conduct electricity with no resistance at temperatures well above absolute zero.

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.