Closing the 'Pseudogap' on Superconductivity

March 13, 2008

One of the biggest mysteries in studying high-temperature (Tc) superconductors - materials that conduct electrical current with no resistance below a certain transition temperature - is the origin of a gap in the energy level of the materials' electronic spectrum. Brookhaven physicist Hongbo Yang presented his latest research on this "pseudogap" on Monday at the American Physical Society meeting.

Understanding the pseudogap may help scientists understand the mechanism for high-temperature superconductivity, which in turn could lead to the strategic design of superconductors for practical applications such as high-capacity, highly efficient power transmission lines.

There are competing theories for the origin of the pseudogap. In one, the material is considered a normal metal from which superconductivity starts to emerge via the pairing of electrons. In another, the pseudogap is thought to reflect the competition between superconductivity and another condition of the material - some other "ground state."

"Our new results indicate that the first theory is clearly incorrect, these are not normal metals that simply become superconductors," said Yang.

Yang presented his results of how the gap changes at various temperatures and with various levels of doping - that is, with different amounts of various other atoms added to the material.

"The results show that the underdoped system in the normal state behaves differently from all regions of the phase diagram in the superconducting state, and point to potentially different origins for the pseudogap," he said.

Source: Brookhaven National Laboratory

Explore further: Experiments debunk 'pseudogap' role in superconductivity, pave way to practical superconductors

Related Stories

Physicists reveal superconducting surprise

February 12, 2008

MIT physicists have taken a step toward understanding the puzzling nature of high-temperature superconductors, materials that conduct electricity with no resistance at temperatures well above absolute zero.

Recommended for you

In a quantum race everyone is both a winner and a loser

March 24, 2017

Our understanding of the world is mostly built on basic perceptions, such as that events follow each other in a well-defined order. Such definite orders are required in the macroscopic world, for which the laws of classical ...

Inventing a new kind of matter

March 24, 2017

Imagine a liquid that could move on its own. No need for human effort or the pull of gravity. You could put it in a container flat on a table, not touch it in any way, and it would still flow.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.