New protein tag enhances view within living cells

February 22, 2008

The view into the inner world of living cells just got a little brighter and more colorful. A powerful new research tool, when used with other labeling technologies, allows simultaneous visualization of two or more different proteins as well as the ability to distinguish young and old copies of a protein within one living cell. The research is published by Cell Press in the February issue of Chemistry and Biology.

Scientists have developed innovative technologies that make use of fluorescent molecules to visualize proteins and biochemical processes in living cells. Various technologies exist that allow transfer of fluorescent properties to specific proteins of interest. One such method, developed by Dr. Kai Johnsson and colleagues at Ecole Polytechnique Fédérale de Lausanne, is derived from the human DNA repair enzyme alkylguanine-DNA alkyltransferase (AGT). This tool, called SNAP-tag, can be covalently labeled in living cells using benzylguanine (BG) derivatives bearing a chemical probe.

Now, Dr. Johnsson’s group has modified SNAP-tag to generate a new AGT-based tag, named CLIP-tag, which reacts specifically with benzylcytosine (BC) derivatives. “Use of SNAP-tag in conjunction with CLIP-tag permits simultaneous labeling of two proteins with different molecular probes for multiparameter imaging of cellular functions in living cells,” explains Dr. Johnsson.

The researchers demonstrate that SNAP-tag and CLIP-tag have some significant advantages over existing labeling methods for conducting multi-protein studies within living cells. Both tags can label proteins in any cellular compartment, have very high specificity towards their native substrates, low reactivity to other BC and BG derivatives and have similar properties that will aid in comparison of one fusion protein to another. Further, chemical labeling methods allow for visualization of proteins in organisms that are not suitable for expression of autofluorescent proteins and are well suited for experiments that make use of other biochemical characterizations after imaging.

“The labeling of CLIP-tag fusion proteins is highly specific and mutually independent from other existing labeling approaches, making the method a highly valuable tool for chemical biology,” concludes Dr. Johnsson. “Furthermore, we show for the first time simultaneous pulse-chase experiments to visualize different generations of two different proteins in one sample, allowing concurrent investigation of two different dynamic processes.”

Source: Cell Press

Explore further: How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

Related Stories

Researchers reveal jamming in cellular motor protein traffic

November 17, 2017

To keep a cell alive, molecular motor proteins constantly transport building blocks and waste across the cell, along its biopolymer network. Because of the high density of these proteins, jamming effects are believed to affect ...

Detecting new proteins in active brains of mice

November 7, 2017

The complexity of living things is driven, in large part, by the huge diversity of cell types. Since all cells of an organism share the same genes, the diversity of cells must come from the particular proteins that are expressed. ...

An RNA TREAT for Halloween

October 31, 2017

Jeff Chao, Junior group leader at the FMI, and his group developed a sophisticated method to measure mRNA degradation in single cells. They developed a fluorescent biosensor that allows the distinction of intact transcripts ...

A force-driven mechanism for establishing cell polarity

November 6, 2017

A team of researchers from the Mechanobiology Institute, Singapore (MBI) at the National University of Singapore, along with colleagues from Temasek Life Sciences Laboratory and A*STAR's Institute of Molecular and Cell Biology ...

Recommended for you

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

New X-ray spectroscopy explores hydrogen-generating catalyst

November 22, 2017

Using a newly developed technique, researchers from Japan, Germany and the U.S. have identified a key step in production of hydrogen gas by a bacterial enzyme. Understanding these reactions could be important in developing ...

Re-cloning of first cloned dog deemed successful thus far

November 22, 2017

(Phys.org)—A team of researchers with Seoul National University, Michigan State University and the University of Illinois at Urbana-Champaign has re-cloned the first dog to be cloned. In their paper published in the journal ...

Testing the advantage of being left-handed in sports

November 22, 2017

(Phys.org)—Sports scientist Florian Loffing with the Institute of Sport Science, University of Oldenburg in Germany has conducted a study regarding the possibility of left-handed athletes having an advantage over their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.