Compact, wavelength-on-demand Quantum Cascade Laser chip created

February 6, 2008
Compact, wavelength-on-demand Quantum Cascade Laser chip created

Engineers at Harvard's School of Engineering and Applied Sciences have demonstrated a highly versatile, compact and portable Quantum Cascade Laser sensor for the fast detection of a large number of chemicals, ranging from infinitesimal traces of gases to liquids, by broad tuning of the emission wavelength. The potential range of applications is huge, including homeland security, medical diagnostics such as breadth analysis, pollution monitoring, and environmental sensing of the greenhouse gases responsible for global warming.

The team, which reported its findings in the Dec. 3 issue of Applied Physics Letters, was headed by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, and includes graduate student Benjamin Lee, researchers Mikhail Belkin and Jim MacArthur, and undergraduate Ross Audet, all of Harvard's School of Engineering and Applied Sciences. The researchers have also filed for U.S. patents covering this new class of laser chips.

The broad emission spectrum of the Quantum Cascade Laser material, grown by a commercial reactor used for the mass production of semiconductor lasers, is designed using state-of-the-art nanotechnology by controlling the size of nanometric thin quantum wells in the active region.

An array of 32 lasers, each designed to emit at a specific wavelength, is then fabricated on a single chip by standard semiconductor processing techniques to have a size of less than one-fourth of a dime. A microcomputer individually fires up and tunes each laser in the array in any desired sequence. This generates a broad and continuously tunable wavelength spectrum that can be used to detect a large number of chemical compounds.

"Our versatile laser spectrometer currently emits any wavelengths between 8.7 and 9.4 microns, in the so-called 'molecular fingerprint region' where most molecules have their telltale absorption features which uniquely identify them," Belkin says. "This ability to design a broad laser spectrum anywhere in the fingerprint region holds the promise of replacing the bulky and large infrared spectrometers currently used for chemical analysis and sensing."

The tunability of the laser chip can be extended up to 10-fold and several widely spaced absorption features can be targeted with the same chip, which will enable the detection in parallel of an extremely large number of trace gases in concentrations of parts per billion in volume. A portable compact spectrometer with this capability would revolutionize chemical sensing.

"These millimeter-size laser chips exploit the inherent enormous wavelength agility of state-of-the-art Quantum Cascade Lasers," says Capasso, who co-invented them in 1994 at Bell Labs. "As a first application we have shown that these widely tunable and extremely compact sensors can measure the spectrum of liquids with the same accuracy and reproducibility of state-of-the-art infrared spectrometers, but with inherently greater spectral resolution."

Source: Harvard University

Explore further: New microscope chemically identifies micron-sized particles

Related Stories

New microscope chemically identifies micron-sized particles

January 5, 2017

Researchers have developed a microscope that can chemically identify individual micron-sized particles. The new approach could one day be used in airports or other high-security venues as a highly sensitive and low-cost way ...

Capturing an elusive spectrum of light

November 24, 2016

Researchers led by EPFL have built ultra-high quality optical cavities for the elusive mid-infrared spectral region, paving the way for new chemical and biological sensors, as well as promising technologies.

Optical clock technology tested in space for first time

November 17, 2016

For the first time, an optical clock has traveled to space, surviving harsh rocket launch conditions and successfully operating under the microgravity that would be experienced on a satellite. This demonstration brings optical ...

Recommended for you

Sci-fi holograms a step closer with tiny invention

January 24, 2017

Australian National University physicists have invented a tiny device that creates the highest quality holographic images ever achieved, opening the door to imaging technologies seen in science fiction movies such as Star ...

Experiment resolves mystery about wind flows on Jupiter

January 23, 2017

One mystery has been whether the jets exist only in the planet's upper atmosphere—much like the Earth's own jet streams—or whether they plunge into Jupiter's gaseous interior. If the latter is true, it could reveal clues ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

h0dges
not rated yet Feb 06, 2008
One step closer to the star trek tricorder...
zevkirsh
not rated yet Feb 06, 2008
this is officially half on and off the quantum hook.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.