Rough times: NIST's new approach to surface profiling

January 9, 2008
Surface Profiling; Scanning Laser Confocal Microscopy
The four images (taken with scanning laser confocal microscopy) show variations in surface roughness of an aluminum alloy as produced by increasing amounts of strain: A-1 percent, B-4 percent, C-8 percent, and D-12 percent. Credit: Mark Stoudt, Joseph Hubbard and Stanley Janet, NIST

Researchers at the National Institute of Standards and Technology have developed a novel technique for measuring the roughness of surfaces that is casting doubt on the accuracy of current procedures. Their results announced in a forthcoming paper could cut development costs for automakers as they design manufacturing tools for new, fuel-efficient, lightweight alloys.

Surface roughness is a key issue for auto manufacturers and other industries that use sheet metal, one that goes far beyond simple cosmetics. Faint striations and other marks that appear when metal is shaped can indicate residual stresses that can cause the part to fail later on. They also lead to extra wear and early retirement for the expensive stamping dies used to form sheet metal into fenders and other body parts (a typical production die can cost $2 million or more.)

And measures of surface roughness feed into models that predict friction and the metal’s “springback”—the amount it will unbend after being stamped. Springback has to be known and controlled to build accurate dies for complex metal shapes. A significant cost in introducing new lightweight alloys for cars is the trial-and-error process needed to develop a new set of dies for each new alloy.

Conventionally, roughness is measured with a profilometer, an instrument with a probe like a high-tech phonograph needle that is tracked in a line across the test surface to record the peaks and valleys. The process is repeated several times at intervals across the test surface, and the results are averaged into a “roughness” figure. (New non-contact instruments use optical probes, but the idea is the same.) But NIST researchers have found that these measures may be misleading—as both measurement uncertainties and statistical errors are compounded when the 2-D lines are extrapolated to the entire surface.

NIST’s approach uses data from a scanning laser confocal microscope (SLCM), an instrument that builds a point-by-point image of a surface in three dimensions. The data from a single SLCM image—representing an area of about 1000 X 800 micrometers by 20 micrometers in depth—are analyzed using mathematical techniques that treat every point in the image simultaneously to produce a roughness measure that effectively considers the entire 3-D surface rather than a collection of 2-D stripes.

One early finding is that the generally accepted linear relationship between surface roughness and material deformation is wrong, at least for the aluminum alloy the group studied. The more accurate data from the 3-D analysis shows that a more complicated relationship was masked by the large uncertainties of the linear profilometers. The NIST researchers hope their new technique will lead to more accurate models of the effects of strain on new alloys and, eventually, lower development and tooling costs for metalworking industries.

Citation: M.R. Stoudt, J.B. Hubbard and S.A. Janet. “Using matrix methods to characterize evolution of deformation induced surface roughness in aluminium sheet,” Materials Science and Technology, In Press.

Source: National Institute of Standards and Technology

Explore further: Magnetic memories of a metal world

Related Stories

Magnetic memories of a metal world

June 22, 2017

4.5 billion years ago in the violent, high-speed environment of the early solar system, a protoplanet roughly the size of Mars was involved in a series of fierce collisions with other large planetary bodies.

Using machine vision for 3-D printing

June 6, 2017

Researchers from Carnegie Mellon University's College of Engineering have developed machine vision technology that can autonomously identify and sort metal 3-D printing powder types with an accuracy of more than 95 percent—more ...

Wearable system helps visually impaired users navigate

May 31, 2017

Computer scientists have been working for decades on automatic navigation systems to aid the visually impaired, but it's been difficult to come up with anything as reliable and easy to use as the white cane, the type of metal-tipped ...

Recommended for you

Water exists as two different liquids

June 26, 2017

We normally consider liquid water as disordered with the molecules rearranging on a short time scale around some average structure. Now, however, scientists at Stockholm University have discovered two phases of the liquid ...

Tiny magnetic tremors unlock exotic superconductivity

June 26, 2017

Deep within solids, individual electrons zip around on a nanoscale highway paved with atoms. For the most part, these electrons avoid one another, kept in separate lanes by their mutual repulsion. But vibrations in the atomic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.