Genetic differences influence aging rates in the wild

December 12, 2007

Long-lived, wild animals harbor genetic differences that influence how quickly they begin to show their age, according to the results of a long-term study reported online on December 13th in Current Biology, a Cell Press publication. Evidence for the existence of such genetic variation for aging rates—a central tenet in the evolutionary theory that explains why animals would show physiological declines as they grow older—had largely been lacking in natural populations until now, the researchers said.

“We’ve found that individuals differ in their rates of aging, or senescence, and that these differences are (at least in part) caused by genetic effects so they will be inherited,” said Alastair Wilson of the University of Edinburgh. “While the genetic effects we found are completely consistent with existing theory, scientists hadn’t previously managed to test this theory properly except in controlled laboratory experiments.

“We’ve also done this work on long-lived mammals,” he added. “For someone interested in the evolution of aging and senescence in humans, these are going to be more relevant organisms than Drosophila [fruit flies].”

Scientists normally expect genetic mutations having bad effects to be removed by natural selection, Wilson explained. Conversely, selection will lead to an increase in the frequency of mutations that are beneficial. “On this basis, any genes with bad effects on survival or reproduction should be removed by selection,” he said. “But if that were true then there is no reason for individuals to deteriorate as they get old.”

Aging therefore raises a critical question: How has natural selection failed to remove genetic effects responsible for such reduced fitness among older individuals" Current evolutionary theory explains this phenomenon by showing that, as a result of the risk of death from environmental causes that individuals experience over the course of their lives, the force of selection inevitably weakens with age, he continued. This, in turn, means that genetic mutations having detrimental effects that are only felt late in life may persist in a population. Although widely accepted, this theory rests on the assumption that there is genetic variation for aging in natural systems.

To look for such genetic variation in the new study, the researchers examined wild Soay sheep and red deer living on two Scottish islands. Those populations were ideal for the study because they provide unparalleled levels of data, including individual survival and reproductive success, for large numbers of long-lived animals, Wilson said. In both study systems, individually marked animals are followed throughout their lives from birth until death, and their relationships to one another are known.

In both the red deer and sheep populations, they found evidence for age-specific genetic effects on “fitness”—a measure combining the animals’ probability of survival and reproduction. “The present study provides, to our knowledge, the first evidence for additive genetic variance in aging rates from a wild, non-model study organism,” the researchers concluded. “Furthermore, the age-specific patterns of additive genetic (co)variation evident in the two populations examined here were entirely consistent with the hypothesis that declines in fitness with age are driven by a weakening of natural selection.”

Source: Cell Press

Explore further: New blood protein markers help track premature ageing disease

Related Stories

New blood protein markers help track premature ageing disease

January 18, 2018

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare fatal genetic disorder which causes sufferers to age prematurely. In a new study in the journal Pediatric Research, which is published by Springer Nature, scientists ...

New study offers insights on genetic indicators of COPD risk

January 16, 2018

Researchers have discovered that genetic variations in the anatomy of the lungs could serve as indicators to help identify people who have low, but stable, lung function early in life, and those who are particularly at risk ...

The Down's syndrome 'super genome'

January 19, 2018

Down's syndrome – also known as trisomy 21 – is a genetic disorder caused by an additional third chromosome 21. Although this genetic abnormality is found in one out of 700 births, only 20 percent of foetuses with trisomy ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Fast computer control for molecular machines

January 19, 2018

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.