Climate's remote control on hurricanes

December 12, 2007
Climate's remote control on hurricanes
The multiple effects of warming oceans on hurricane intensity. Credit: NOAA, GFDL

Natural climate variations, which tend to involve localized changes in sea surface temperature, may have a larger effect on hurricane activity than the more uniform patterns of global warming, a report in this week's Nature suggests.

In the debate over the effect of global warming on hurricanes, it is generally assumed that warmer oceans provide a more favorable environment for hurricane development and intensification. However, several other factors, such as atmospheric temperature and moisture, also come into play.

Drs. Gabriel A. Vecchi of the NOAA Geophysical Fluid Dynamics Laboratory and Brian J. Soden from the University of Miami Rosenstiel School of Marine & Atmospheric Science analyzed climate model projections and observational reconstructions to explore the relationship between changes in sea surface temperature and tropical cyclone 'potential intensity' - a measure that provides an upper limit on cyclone intensity.

They found that warmer oceans do not alone produce a more favorable environment for storms because the effect of remote warming can counter, and sometimes overwhelm, the effect of local surface warming. "Warming near the storm acts to increase the potential intensity of hurricanes, whereas warming away from the storms acts to decrease their potential intensity," Vecchi said.

Titled “Effect of Remote Sea Surface Temperature Change on Tropical Cyclone Potential Intensity,” their study found that long-term changes in potential intensity are more closely related to the regional pattern of warming than to local ocean temperature change. Regions that warm more than the tropical average are characterized by increased potential intensity, and vice versa. “A surprising result is that the current potential intensity for Atlantic hurricanes is about average, despite the record high temperatures of the Atlantic Ocean over the past decade.” Soden said. “This is due to the compensating warmth in other ocean basins.”

“As we try to understand the future changes in hurricane intensity, we must look beyond changes in Atlantic Ocean temperature. If the Atlantic warms more slowly than the rest of the tropical oceans, we would expect a decrease in the upper limit on hurricane intensity,” Vecchi added. “This is an interesting piece of the puzzle.”

“While these results challenge some current notions regarding the link between climate change and hurricane activity, they do not contradict the widespread scientific consensus on the reality of global warming,” Soden noted.

Source: University of Miami

Explore further: Climate imperils Ethiopia's coffee output: study

Related Stories

Fuel of the future

June 21, 2017

Heavy-duty trucks will soon be driving around in Trondheim, Norway, fuelled by hydrogen created with solar power, and emitting only pure water vapour as exhaust. Not only will hydrogen technology revolutionize road transport, ...

Probing the possibility of life on super-Earths

June 19, 2017

Along with its aesthetic function of helping create the glorious Aurora Borealis, or Northern Lights, the powerful magnetic field surrounding our planet has a fairly important practical value as well: It makes life possible.

Alpine streams produce more CO2 after a warm winter

June 9, 2017

An EPFL study has for the first time measured the impact of climate change on alpine streams, and the results are quite worrying: after a low-snow winter, these streams release more carbon dioxide than they absorb.

Recommended for you

The dust storm microbiome

June 27, 2017

Israel is subjected to sand and dust storms from several directions: northeast from the Sahara, northwest from Saudi Arabia and southwest from the desert regions of Syria. The airborne dust carried in these storms affects ...

Collapse of the European ice sheet caused chaos

June 27, 2017

Scientists have reconstructed in detail the collapse of the Eurasian ice sheet at the end of the last ice age. The big melt wreaked havoc across the European continent, driving home the original Brexit 10,000 years ago.

Lightning sparking more boreal forest fires

June 27, 2017

A new NASA-funded study finds that lightning storms were the main driver of recent massive fire years in Alaska and northern Canada, and that these storms are likely to move farther north with climate warming, potentially ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.