A new look at the proton

September 25, 2007

Dutch researcher Paul van der Nat investigated more than three million collisions between electrons and protons. In his PhD thesis he demonstrates -- for the first time -- that the spin contribution of quarks to the proton can be studied by examining collisions in which two particles (hadrons) are produced.

The spin of a particle can most easily be compared to the rotating movement of a spinning top. In the HERMES experiment at the HERA particle accelerator in Hamburg, physicists are investigating how the spin of protons can be explained by the characteristics of their building blocks: quarks and gluons.

Van der Nat investigated a method to measure the contribution of the spin of the quarks to the total spin of the proton, independent of the contribution of the spin of the gluons.

For this a quark is shot out of the proton by an electron from the particle accelerator, as a result of which two hadrons are formed. The direction and amount of motion of these two hadrons is accurately measured. This method, which Van der Nat applied for the first time, turned out to be successful.

Spin is a characteristic property of particles, just like matter and electrical charge. Spin was discovered in 1925, by the Dutch physicists Goudsmit and Uhlenbeck. In 1987, scientists at CERN in Geneva discovered that only a small fraction of the proton's spin is caused by the spin of its constituent quarks.

The HERMES experiment was subsequently set up to find this missing quantity of spin, and has been running since 1995. It is expected that spin will play an increasingly important role in many applications. The MRI scanner is a well-known example of an application in which the spin of protons plays a key role.

Source: Netherlands Organization for Scientific Research

Explore further: MACHOs are dead. WIMPs are a no-show. Say hello to SIMPs: New candidate for dark matter

Related Stories

How did the proton get its spin?

March 31, 2017

Calculating a proton's spin used to be an easy college assignment. In fact, Carl Gagliardi remembers answering that question when he was a physics graduate student in the 1970s. But the real answer turned out not to be simple ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.